Suppr超能文献

理解/揭示类胡萝卜素激发单线态。

Understanding/unravelling carotenoid excited singlet states.

机构信息

Department of Applied Chemistry for Environment, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan

Department of Applied Chemistry for Environment, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan.

出版信息

J R Soc Interface. 2018 Apr;15(141). doi: 10.1098/rsif.2018.0026.

Abstract

Carotenoids are essential light-harvesting pigments in natural photosynthesis. They absorb in the blue-green region of the solar spectrum and transfer the absorbed energy to (bacterio-)chlorophylls, and thus expand the wavelength range of light that is able to drive photosynthesis. This process is an example of singlet-singlet excitation energy transfer, and carotenoids serve to enhance the overall efficiency of photosynthetic light reactions. The photochemistry and photophysics of carotenoids have often been interpreted by referring to those of simple polyene molecules that do not possess any functional groups. However, this may not always be wise because carotenoids usually have a number of functional groups that induce the variety of photochemical behaviours in them. These differences can also make the interpretation of the singlet excited states of carotenoids very complicated. In this article, we review the properties of the singlet excited states of carotenoids with the aim of producing as coherent a picture as possible of what is currently known and what needs to be learned.

摘要

类胡萝卜素是天然光合作用中必不可少的光捕获色素。它们在太阳光谱的蓝绿区域吸收光线,并将吸收的能量传递给(细菌)叶绿素,从而扩展了能够驱动光合作用的光波长范围。这个过程是单重态-单重态激发能量转移的一个例子,类胡萝卜素有助于提高光合作用光反应的整体效率。类胡萝卜素的光化学和光物理性质通常通过参考那些不具有任何官能团的简单多烯分子来解释。然而,这并不总是明智的,因为类胡萝卜素通常具有许多官能团,这些官能团会诱导它们产生多种光化学行为。这些差异也会使类胡萝卜素的单重激发态的解释变得非常复杂。在本文中,我们综述了类胡萝卜素的单重激发态的性质,旨在尽可能清晰地描绘出目前已知的和需要了解的内容。

相似文献

1
Understanding/unravelling carotenoid excited singlet states.
J R Soc Interface. 2018 Apr;15(141). doi: 10.1098/rsif.2018.0026.
2
Carotenoids and Photosynthesis.
Subcell Biochem. 2016;79:111-39. doi: 10.1007/978-3-319-39126-7_4.
3
Molecular factors controlling photosynthetic light harvesting by carotenoids.
Acc Chem Res. 2010 Aug 17;43(8):1125-34. doi: 10.1021/ar100030m.
4
Excitation energy transfer in the LHC-II trimer: from carotenoids to chlorophylls in space and time.
Photosynth Res. 2011 Feb;107(2):195-207. doi: 10.1007/s11120-011-9626-4. Epub 2011 Feb 2.
5
Excitation quenching in chlorophyll-carotenoid antenna systems: 'coherent' or 'incoherent'.
Photosynth Res. 2020 Jun;144(3):301-315. doi: 10.1007/s11120-020-00737-8. Epub 2020 Apr 8.
6
An alternative carotenoid-to-bacteriochlorophyll energy transfer pathway in photosynthetic light harvesting.
Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):6017-22. doi: 10.1073/pnas.092626599. Epub 2002 Apr 23.
7
Quantum chemical insights in energy dissipation and carotenoid radical cation formation in light harvesting complexes.
Phys Chem Chem Phys. 2007 Jun 21;9(23):2917-31. doi: 10.1039/b703028b. Epub 2007 Apr 25.
9
Photosynthetic light harvesting by carotenoids: detection of an intermediate excited state.
Science. 2002 Dec 20;298(5602):2395-8. doi: 10.1126/science.1074685.
10
Biological functions of carotenoids--diversity and evolution.
Biofactors. 1999;10(2-3):99-104. doi: 10.1002/biof.5520100203.

引用本文的文献

1
Genetic and biochemical diversity of terpene biosynthesis in cyanobacterial strains from tropical soda lakes.
Front Microbiol. 2025 Jul 4;16:1582103. doi: 10.3389/fmicb.2025.1582103. eCollection 2025.
3
Photosynthetic Bacteria: Light-Responsive Biomaterials for Anti-Tumor Photodynamic Therapy.
Int J Nanomedicine. 2025 Jan 10;20:465-482. doi: 10.2147/IJN.S500314. eCollection 2025.
4
Conjugation Length Dependence of Intramolecular Singlet Fission in a Series of Regioregular Oligo 3-Alkyl(thienylene-vinylene)s.
J Am Chem Soc. 2025 Jan 8;147(1):662-668. doi: 10.1021/jacs.4c12877. Epub 2024 Dec 23.
5
Influence of Quadrupolar Molecular Transitions within Plasmonic Cavities.
ACS Nano. 2024 Jun 4;18(22):14487-14495. doi: 10.1021/acsnano.4c01368. Epub 2024 May 24.
6
Multimodal non-invasive probing of stress-induced carotenogenesis in the cells of microalga Bracteacoccus aggregatus.
Protoplasma. 2024 Sep;261(5):1051-1071. doi: 10.1007/s00709-024-01956-9. Epub 2024 May 4.
7
Predicting Solvatochromism of Chromophores in Proteins through QM/MM and Machine Learning.
J Phys Chem A. 2024 May 9;128(18):3646-3658. doi: 10.1021/acs.jpca.4c00249. Epub 2024 Apr 29.
8
The nature of carotenoid S* state and its role in the nonphotochemical quenching of plants.
Nat Commun. 2024 Jan 29;15(1):847. doi: 10.1038/s41467-024-45090-9.
9
Ultrafast excited-state dynamics of Luteins in the major light-harvesting complex LHCII.
Photochem Photobiol Sci. 2024 Feb;23(2):303-314. doi: 10.1007/s43630-023-00518-x. Epub 2023 Dec 27.
10
Isomerization of carotenoids in photosynthesis and metabolic adaptation.
Biophys Rev. 2023 Oct 11;15(5):887-906. doi: 10.1007/s12551-023-01156-4. eCollection 2023 Oct.

本文引用的文献

1
Reactive Oxygen Species, Aging, and Antioxidative Nutraceuticals.
Compr Rev Food Sci Food Saf. 2004 Jan;3(1):21-33. doi: 10.1111/j.1541-4337.2004.tb00058.x.
3
Comparison study of the effect of alkyl-modified and unmodified PAMAM and PPI dendrimers on solubility and antitumor activity of crocetin.
Artif Cells Nanomed Biotechnol. 2017 Nov;45(7):1356-1362. doi: 10.1080/21691401.2016.1236805. Epub 2016 Oct 31.
4
A Unified Picture of S* in Carotenoids.
J Phys Chem Lett. 2016 Sep 1;7(17):3347-52. doi: 10.1021/acs.jpclett.6b01455. Epub 2016 Aug 15.
5
Carotenoids and Photosynthesis.
Subcell Biochem. 2016;79:111-39. doi: 10.1007/978-3-319-39126-7_4.
6
Effects of Molecular Symmetry on the Electronic Transitions in Carotenoids.
J Phys Chem Lett. 2016 May 19;7(10):1821-9. doi: 10.1021/acs.jpclett.6b00637. Epub 2016 May 3.
7
Vibronic coupling in the excited-states of carotenoids.
Phys Chem Chem Phys. 2016 Apr 28;18(16):11443-53. doi: 10.1039/c5cp07542d.
8
Excitation Energy-Transfer Dynamics of Brown Algal Photosynthetic Antennas.
J Phys Chem Lett. 2012 Sep 20;3(18):2659-64. doi: 10.1021/jz300612c. Epub 2012 Sep 7.
10
Excited state conformational dynamics in carotenoids: dark intermediates and excitation energy transfer.
Arch Biochem Biophys. 2015 Apr 15;572:175-183. doi: 10.1016/j.abb.2015.02.016. Epub 2015 Feb 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验