Department of Bioproducts and Biosystems, Aalto University, Aalto, Finland.
Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland.
Nat Nanotechnol. 2023 Oct;18(10):1205-1212. doi: 10.1038/s41565-023-01443-x. Epub 2023 Jul 17.
Viral capsids can adopt various geometries, most iconically characterized by icosahedral or helical symmetries. Importantly, precise control over the size and shape of virus capsids would have advantages in the development of new vaccines and delivery systems. However, current tools to direct the assembly process in a programmable manner are exceedingly elusive. Here we introduce a modular approach by demonstrating DNA-origami-directed polymorphism of single-protein subunit capsids. We achieve control over the capsid shape, size and topology by employing user-defined DNA origami nanostructures as binding and assembly platforms, which are efficiently encapsulated within the capsid. Furthermore, the obtained viral capsid coatings can shield the encapsulated DNA origami from degradation. Our approach is, moreover, not limited to a single type of capsomers and can also be applied to RNA-DNA origami structures to pave way for next-generation cargo protection and targeting strategies.
病毒衣壳可以采用各种几何形状,最典型的特征是具有二十面体或螺旋对称。重要的是,对病毒衣壳大小和形状的精确控制将有利于开发新的疫苗和输送系统。然而,目前用于以可编程方式指导组装过程的工具非常难以捉摸。在这里,我们通过展示 DNA 折纸指导的单一蛋白亚基衣壳的多态性,介绍了一种模块化方法。我们通过使用用户定义的 DNA 折纸纳米结构作为结合和组装平台来实现对衣壳形状、大小和拓扑结构的控制,这些结构有效地被封装在衣壳内。此外,获得的病毒衣壳涂层可以保护封装的 DNA 折纸免受降解。我们的方法不仅限于单一类型的衣壳蛋白,也可以应用于 RNA-DNA 折纸结构,为下一代货物保护和靶向策略铺平道路。
Nat Nanotechnol. 2023-10
Nano Lett. 2014-3-19
Methods Mol Biol. 2018
J Am Chem Soc. 2009-2-25
Viruses. 2023-7-31
Nanoscale. 2022-8-18
Biosensors (Basel). 2025-6-20
Entropy (Basel). 2025-3-8
Nat Struct Mol Biol. 2025-2-26
ACS Nano. 2025-3-11
Chemphyschem. 2025-1-2
Nat Nanotechnol. 2024-11
Eur Phys J E Soft Matter. 2023-11-2
Nat Nanotechnol. 2023-7
Nat Commun. 2023-2-23
Commun Mater. 2022-2-7
ACS Nano. 2021-9-28