Bobnar Jernej, Lozinšek Matic, Kapun Gregor, Njel Christian, Dedryvère Rémi, Genorio Boštjan, Dominko Robert
National Institute of Chemistry, Hajdrihova 19, SI-1001, Ljubljana, Slovenia.
University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1001, Ljubljana, Slovenia.
Sci Rep. 2018 Apr 11;8(1):5819. doi: 10.1038/s41598-018-23991-2.
Metallic lithium is considered to be one of the most promising anode materials since it offers high volumetric and gravimetric energy densities when combined with high-voltage or high-capacity cathodes. However, the main impediment to the practical applications of metallic lithium is its unstable solid electrolyte interface (SEI), which results in constant lithium consumption for the formation of fresh SEI, together with lithium dendritic growth during electrochemical cycling. Here we present the electrochemical performance of a fluorinated reduced graphene oxide interlayer (FGI) on the metallic lithium surface, tested in lithium symmetrical cells and in combination with two different cathode materials. The FGI on the metallic lithium exhibit two roles, firstly it acts as a Li-ion conductive layer and electronic insulator and secondly, it effectively suppresses the formation of high surface area lithium (HSAL). An enhanced electrochemical performance of the full cell battery system with two different types of cathodes was shown in the carbonate or in the ether based electrolytes. The presented results indicate a potential application in future secondary Li-metal batteries.
金属锂被认为是最有前途的负极材料之一,因为当与高压或高容量正极结合时,它能提供高体积能量密度和高重量能量密度。然而,金属锂实际应用的主要障碍是其不稳定的固体电解质界面(SEI),这导致在形成新鲜SEI时锂不断消耗,以及在电化学循环过程中锂枝晶生长。在此,我们展示了金属锂表面氟化还原氧化石墨烯中间层(FGI)的电化学性能,该性能在锂对称电池中以及与两种不同正极材料组合时进行了测试。金属锂上的FGI具有两个作用,首先它充当锂离子导电层和电子绝缘体,其次,它有效地抑制了高比表面积锂(HSAL)的形成。在碳酸盐或醚基电解质中,使用两种不同类型正极的全电池系统的电化学性能得到了增强。所呈现的结果表明其在未来二次锂金属电池中的潜在应用。