Suppr超能文献

拉曼编码的、多价糖纳米缀合物,用于可追踪的特异性结合和杀伤细菌。

Raman-encoded, multivalent glycan-nanoconjugates for traceable specific binding and killing of bacteria.

机构信息

School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore.

Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.

出版信息

Biomater Sci. 2018 May 29;6(6):1339-1346. doi: 10.1039/c8bm00139a.

Abstract

Glycan recognition plays key roles in cell-cell and host-pathogen interactions, stimulating widespread interest in developing multivalent glycoconjugates with superior binding affinity for biological and medical uses. Here, we explore the use of Raman-encoded silver coated gold nanorods (GNRs) as scaffolds to form multivalent glycoconjugates. The plasmonic scaffolds afford high-loading of glycan density and their optical properties offer the possibilities of monitoring and quantitative analysis of glycan recognition. Using E. coli strains with tailored on/off of the FimH receptors, we have demonstrated that Raman-encoded GNRs not only allow for real-time imaging and spectroscopic detection of specific binding of the glycan-GNR conjugates with bacteria of interest, but also cause rapid eradication of the bacteria due to the efficient photothermal conversion of GNRs in the near-infrared spectral window. We envision that optically active plasmonic glycoconjugates hold great potential for screening multivalent glycan ligands for therapeutic and diagnostic applications.

摘要

糖基识别在细胞-细胞和宿主-病原体相互作用中起着关键作用,这激发了人们广泛的兴趣,开发出具有更高结合亲和力的多价糖缀合物,用于生物和医学用途。在这里,我们探索了使用 Raman 编码的银涂金纳米棒 (GNR) 作为支架来形成多价糖缀合物。等离子体支架提供了高聚糖密度的负载,其光学性质提供了监测和定量分析糖基识别的可能性。使用定制的 FimH 受体开/关的大肠杆菌菌株,我们已经证明,Raman 编码的 GNR 不仅允许实时成像和光谱检测与感兴趣的细菌的糖-GNR 缀合物的特异性结合,而且由于 GNR 在近红外光谱窗口中的高效光热转换,也能迅速消灭细菌。我们设想,光学活性的等离子体糖缀合物在筛选用于治疗和诊断应用的多价糖配体方面具有巨大的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验