Department of Physics, SUNY University at Albany, 1400 Washington Avenue, Albany, NY, 12222, USA.
Department of Medicine, Division of Allergy, Immunology & Rheumatology, SUNY University at Buffalo, 6074 Clinical and Translational Research Center, 875 Ellicott St, Buffalo, NY, 14203, USA.
J Neuroimmune Pharmacol. 2018 Sep;13(3):396-411. doi: 10.1007/s11481-018-9787-4. Epub 2018 Apr 11.
Methamphetamine (METH) is a drug of abuse, the acute and chronic use of which induces neurotoxic responses in the human brain, ultimately leading to neurocognitive disorders. Our goals were to understand the impact of METH on microglial mitochondrial respiration and to determine whether METH induces the activation of the mitochondrial-dependent intrinsic apoptosis pathway in microglia. We assessed the expression of pro- apoptosis genes using qPCR of RNA extracted from a human microglial cell line (HTHU). We examined the apoptosis-inducing effects of METH on microglial cells using digital holographic microscopy (DHM) to quantify real-time apoptotic volume decrease (AVD) in microglia in a noninvasive manner. METH treatment significantly increased AVD, activated Caspase 3/7, increased the gene expression levels of the pro- apoptosis proteins, APAF-1 and BAX, and decreased mitochondrial DNA content. Using immunofluorescence analysis, we found that METH increased the expression of the mitochondrial proteins cytochrome c and MCL-1, supporting the activation of mitochondrion-dependent (intrinsic) apoptosis pathway. Cellular bio-energetic flux analysis by Agilent Seahorse XF Analyzer revealed that METH treatment increased both oxidative and glycolytic respiration after 3 h, which was sustained for at least 24 h. Several events, such as oxidative stress, neuro-inflammatory responses, and mitochondrial dysfunction, may converge to mediate METH-induced apoptosis of microglia that may contribute to neurotoxicity of the CNS. Our study has important implications for therapeutic strategies aimed at preserving mitochondrial function in METH abusing patients.
甲基苯丙胺(METH)是一种滥用药物,其急性和慢性使用会导致人类大脑产生神经毒性反应,最终导致神经认知障碍。我们的目标是了解 METH 对小胶质细胞线粒体呼吸的影响,并确定 METH 是否会诱导小胶质细胞中线粒体依赖性内在凋亡途径的激活。我们使用从人小胶质细胞系(HTHU)提取的 RNA 的 qPCR 评估了促凋亡基因的表达。我们使用数字全息显微镜(DHM)检查了 METH 对小胶质细胞的凋亡诱导作用,以非侵入性方式定量实时测量小胶质细胞的凋亡体积减少(AVD)。METH 处理显著增加了 AVD,激活了 Caspase 3/7,增加了促凋亡蛋白 APAF-1 和 BAX 的基因表达水平,并降低了线粒体 DNA 含量。通过免疫荧光分析,我们发现 METH 增加了线粒体蛋白细胞色素 c 和 MCL-1 的表达,支持线粒体依赖性(内在)凋亡途径的激活。通过安捷伦 Seahorse XF 分析仪进行的细胞生物能量通量分析显示,METH 处理后 3 小时增加了氧化和糖酵解呼吸,至少持续 24 小时。氧化应激、神经炎症反应和线粒体功能障碍等几种事件可能会汇聚在一起,介导 METH 诱导的小胶质细胞凋亡,从而导致中枢神经系统的神经毒性。我们的研究对于旨在保护 METH 滥用患者线粒体功能的治疗策略具有重要意义。