Sydney Medical School, University of Sydney, Sydney, NSW, Australia.
Heart Research Institute, 7 Eliza Street, Newtown, Sydney, NSW, Australia.
J Physiol. 2018 Aug;596(15):3217-3232. doi: 10.1113/JP275804. Epub 2018 May 19.
In anaesthetized rats, acute intermittent hypoxia increases sympathetic nerve activity, sympathetic peripheral chemoreflex sensitivity and central sympathetic-respiratory coupling. Renin-angiotensin system inhibition prevents the sympathetic effects of intermittent hypoxia, with intermittent injections of angiotensin II into the systemic circulation replicating these effects. Bilateral carotid body denervation reduces the sympathetic effects of acute intermittent hypoxia and eliminates the increases in chemoreflex sensitivity and sympathetic-respiratory coupling. Pharmacological inhibition of the subfornical organ also reduces the sympathetic effects of acute intermittent hypoxia, although it has no effect on the increases in chemoreflex sensitivity and central sympathetic-respiratory coupling. Combining both interventions eliminates the sympathetic effects of both intermittent hypoxia and angiotensin II.
Circulating angiotensin II (Ang II) is vital for arterial pressure elevation following intermittent hypoxia in rats, although its importance in the induction of sympathetic changes is unclear. We tested the contribution of the renin-angiotensin system to the effects of acute intermittent hypoxia (AIH) in anaesthetized and ventilated rats. There was a 33.7 ± 2.9% increase in sympathetic nerve activity (SNA), while sympathetic chemoreflex sensitivity and central sympathetic-respiratory coupling increased by one-fold following AIH. The sympathetic effects of AIH were prevented by blocking angiotensin type 1 receptors with systemic losartan. Intermittent systemic injections of Ang II (Int.Ang II) elicited similar sympathetic responses to AIH. To identify the neural pathways responsible for the effects of AIH and Int.Ang II, we performed bilateral carotid body denervation, which reduced the increase in SNA by 56% and 45%, respectively. Conversely, pharmacological inhibition of the subfornical organ (SFO), an established target of circulating Ang II, reduced the increase in SNA following AIH and Int.Ang II by 65% and 59%, respectively, although it did not prevent the sensitization of the sympathetic peripheral chemoreflex, nor the increase in central sympathetic-respiratory coupling. Combined carotid body denervation and inhibition of the SFO eliminated the enhancement of SNA following AIH and Int.Ang II. Repeated systemic injections of phenylephrine caused an elevation in SNA similar to AIH, and this effect was prevented by a renin inhibitor, aliskiren. Our findings show that the sympathetic effects of AIH are the result of RAS-mediated activations of the carotid bodies and the SFO.
在麻醉大鼠中,急性间歇性低氧增加交感神经活动、外周化学感受性反射敏感性和中枢交感-呼吸耦合。肾素-血管紧张素系统抑制可预防间歇性低氧的交感作用,全身循环间歇性注射血管紧张素 II 可复制这些作用。双侧颈动脉体去神经支配可降低急性间歇性低氧的交感作用,并消除化学感受性反射敏感性和中枢交感-呼吸耦合的增加。穹窿下器官的药理学抑制也降低了急性间歇性低氧的交感作用,尽管它对化学感受性反射敏感性和中枢交感-呼吸耦合的增加没有影响。联合这两种干预措施可消除间歇性低氧和血管紧张素 II 的交感作用。
循环血管紧张素 II(Ang II)对于大鼠间歇性低氧后动脉压升高至关重要,但其在诱导交感变化中的重要性尚不清楚。我们测试了肾素-血管紧张素系统在麻醉和通气大鼠急性间歇性低氧(AIH)中的作用。AIH 后,交感神经活动(SNA)增加 33.7%±2.9%,而交感化学感受性反射敏感性和中枢交感-呼吸耦合增加一倍。全身给予血管紧张素受体 1 阻滞剂洛沙坦可预防 AIH 的交感作用。间歇性全身注射血管紧张素 II(Int.Ang II)可引起类似于 AIH 的类似的交感反应。为了确定 AIH 和 Int.Ang II 作用的神经通路,我们进行了双侧颈动脉体去神经支配,分别降低 SNA 增加 56%和 45%。相反,穹窿下器官(SFO)的药理学抑制(一种循环 Ang II 的既定靶点)降低了 AIH 和 Int.Ang II 后 SNA 的增加,分别为 65%和 59%,尽管它没有预防交感外周化学感受性反射的敏化,也没有增加中枢交感-呼吸耦合。双侧颈动脉体去神经支配和 SFO 抑制联合消除了 AIH 和 Int.Ang II 后 SNA 的增强。重复全身注射苯肾上腺素引起的 SNA 升高类似于 AIH,而肾素抑制剂阿利克仑可预防这种作用。我们的发现表明,AIH 的交感作用是 RAS 介导的颈动脉体和 SFO 激活的结果。