Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-NUS Medical School, National University of Singapore, Singapore.
Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-NUS Medical School, National University of Singapore, Singapore; Clinical Imaging Research Centre, The Agency for Science, Technology and Research and National University of Singapore, Singapore.
Neuroimage. 2018 Aug 1;176:1-10. doi: 10.1016/j.neuroimage.2018.04.014. Epub 2018 Apr 10.
Spatial working memory (SWM) relies on the interplay of anatomically separated and interconnected large-scale brain networks. EEG studies often observe load-associated sustained negative activity during SWM retention. Yet, whether and how such sustained negative activity in retention relates to network-specific functional activation/deactivation and relates to individual differences in SWM capacity remain to be elucidated. To cover these gaps, we recorded concurrent EEG-fMRI data in 70 healthy young adults during the Sternberg delayed-match-to-sample SWM task with three memory load levels. To a subset of participants (N = 28) that performed the task properly and had artefact-free fMRI and EEG data, we employed a novel temporo-spatial principal component analysis to derive load-dependent negative slow wave (NSW) from retention-related event-related potentials. The associations between NSW responses with SWM capacity were divergent in the higher (N = 14) and lower (N = 14) SWM capacity groups. Specifically, larger load-related increase in NSW amplitude was associated with greater SWM capacity for the higher capacity group but lower SWM capacity for the lower capacity group. Furthermore, for the higher capacity group, larger NSW amplitude was related to greater activation in bilateral parietal areas of the fronto-parietal network (FPN) and greater deactivation in medial frontal gyrus and posterior mid-cingulate cortex of the default mode network (DMN) during retention. In contrast, the lower capacity group did not show similar pattern. Instead, greater NSW was linked to higher deactivation in right posterior middle temporal gyrus. Our findings shed light on the possible differential EEG-informed neural network mechanism during memory maintenance underlying individual differences in SWM capacity.
空间工作记忆(SWM)依赖于解剖上分离但又相互连接的大规模大脑网络的相互作用。EEG 研究经常在 SWM 保持期间观察到与负荷相关的持续负性活动。然而,保留期间这种持续的负性活动是否以及如何与特定于网络的功能激活/失活相关,以及与 SWM 能力的个体差异相关,仍有待阐明。为了弥补这些空白,我们在 70 名健康年轻成年人中记录了同步 EEG-fMRI 数据,这些人在 Sternberg 延迟匹配样本 SWM 任务中进行了三个记忆负荷水平。对于正确执行任务且 fMRI 和 EEG 数据无伪影的一部分参与者(N=28),我们采用了一种新的时-空主成分分析方法,从与保留相关的事件相关电位中得出与负荷相关的负慢波(NSW)。在较高(N=14)和较低(N=14)SWM 能力组中,NSW 反应与 SWM 能力之间的相关性存在差异。具体来说,对于较高能力组,NSW 幅度与负荷相关的增加与较大的 SWM 能力相关,但对于较低能力组,NSW 幅度与负荷相关的增加与较低的 SWM 能力相关。此外,对于较高能力组,较大的 NSW 幅度与额顶网络(FPN)双侧顶叶区域的更大激活以及默认模式网络(DMN)内侧额回和后中扣带皮层的更大失活相关。相比之下,较低能力组没有表现出类似的模式。相反,更大的 NSW 与右后颞中回的更高失活相关。我们的发现揭示了在 SWM 能力个体差异的记忆维持过程中,可能存在不同的基于 EEG 的神经网络机制。