Suppr超能文献

支持工作记忆和抑制的大脑网络的任务特定拓扑结构。

Task-specific topology of brain networks supporting working memory and inhibition.

机构信息

Federal Scientific Center of Psychological and Multidisciplinary Researches, Moscow, Russia.

Federal State Institution "National Medical Research Center for Children's Health" of the Ministry of Health of the Russian Federation, Moscow, Russia.

出版信息

Hum Brain Mapp. 2024 Sep;45(13):e70024. doi: 10.1002/hbm.70024.

Abstract

Network neuroscience explores the brain's connectome, demonstrating that dynamic neural networks support cognitive functions. This study investigates how distinct cognitive abilities-working memory and cognitive inhibitory control-are supported by unique brain network configurations constructed by estimating whole-brain networks using mutual information. The study involved 195 participants who completed the Sternberg Item Recognition task and Flanker tasks while undergoing electroencephalography recording. A mixed-effects linear model analyzed the influence of network metrics on cognitive performance, considering individual differences and task-specific dynamics. The findings indicate that working memory and cognitive inhibitory control are associated with different network attributes, with working memory relying on distributed networks and cognitive inhibitory control on more segregated ones. Our analysis suggests that both strong and weak connections contribute to cognitive processes, with weak connections potentially leading to a more stable and support networks of memory and cognitive inhibitory control. The findings indirectly support the network neuroscience theory of intelligence, suggesting different functional topology of networks inherent to various cognitive functions. Nevertheless, we propose that understanding individual variations in cognitive abilities requires recognizing both shared and unique processes within the brain's network dynamics.

摘要

网络神经科学探索大脑的连接组,表明动态神经网络支持认知功能。本研究调查了不同的认知能力——工作记忆和认知抑制控制——如何通过使用互信息估计全脑网络来构建独特的大脑网络配置来支持。这项研究涉及 195 名参与者,他们在进行脑电图记录的同时完成了斯特恩伯格项目识别任务和侧抑制任务。混合效应线性模型分析了网络指标对认知表现的影响,考虑了个体差异和任务特定的动态。研究结果表明,工作记忆和认知抑制控制与不同的网络属性相关,工作记忆依赖于分布式网络,认知抑制控制依赖于更分离的网络。我们的分析表明,强连接和弱连接都有助于认知过程,弱连接可能导致记忆和认知抑制控制的更稳定和支持网络。研究结果间接支持了智力的网络神经科学理论,表明不同的认知功能具有不同的网络功能拓扑结构。然而,我们提出,要理解认知能力的个体差异,需要认识到大脑网络动态中的共享和独特过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f36b/11387957/843e54822c17/HBM-45-e70024-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验