Suppr超能文献

基于转录本水平的基因水平差异分析。

Gene-level differential analysis at transcript-level resolution.

机构信息

UCLA-Caltech Medical Science Training Program, Los Angeles, CA, USA.

Division of Biology and Biological Engineering, Caltech, Pasadena, CA, USA.

出版信息

Genome Biol. 2018 Apr 12;19(1):53. doi: 10.1186/s13059-018-1419-z.

Abstract

Compared to RNA-sequencing transcript differential analysis, gene-level differential expression analysis is more robust and experimentally actionable. However, the use of gene counts for statistical analysis can mask transcript-level dynamics. We demonstrate that 'analysis first, aggregation second,' where the p values derived from transcript analysis are aggregated to obtain gene-level results, increase sensitivity and accuracy. The method we propose can also be applied to transcript compatibility counts obtained from pseudoalignment of reads, which circumvents the need for quantification and is fast, accurate, and model-free. The method generalizes to various levels of biology and we showcase an application to gene ontologies.

摘要

与 RNA 测序转录差异分析相比,基因水平差异表达分析更稳健,更具实验可操作性。然而,使用基因计数进行统计分析可能会掩盖转录水平的动态变化。我们证明了“先分析,后聚合”的方法,即将转录分析得出的 p 值进行聚合以获得基因水平的结果,可以提高敏感性和准确性。我们提出的方法也可以应用于从读取的伪比对中获得的转录本兼容性计数,这避免了定量的需要,并且快速、准确且无模型。该方法适用于各种生物学水平,我们展示了一个应用于基因本体论的例子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52ab/5896116/401252ddecc3/13059_2018_1419_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验