Suppr超能文献

机器学习方法可改善预后,识别具有临床特征的不同表型,并检测心力衰竭患者大队列中对治疗的反应异质性。

Machine Learning Methods Improve Prognostication, Identify Clinically Distinct Phenotypes, and Detect Heterogeneity in Response to Therapy in a Large Cohort of Heart Failure Patients.

机构信息

Section of Cardiovascular Medicine and Center for Outcomes Research, Yale University School of Medicine New Haven, CT

Department of Cardiology, Karolinska Institutet Department of Medicine and Karolinska University Hospital, Stockholm, Sweden.

出版信息

J Am Heart Assoc. 2018 Apr 12;7(8):e008081. doi: 10.1161/JAHA.117.008081.

Abstract

BACKGROUND

Whereas heart failure (HF) is a complex clinical syndrome, conventional approaches to its management have treated it as a singular disease, leading to inadequate patient care and inefficient clinical trials. We hypothesized that applying advanced analytics to a large cohort of HF patients would improve prognostication of outcomes, identify distinct patient phenotypes, and detect heterogeneity in treatment response.

METHODS AND RESULTS

The Swedish Heart Failure Registry is a nationwide registry collecting detailed demographic, clinical, laboratory, and medication data and linked to databases with outcome information. We applied random forest modeling to identify predictors of 1-year survival. Cluster analysis was performed and validated using serial bootstrapping. Association between clusters and survival was assessed with Cox proportional hazards modeling and interaction testing was performed to assess for heterogeneity in response to HF pharmacotherapy across propensity-matched clusters. Our study included 44 886 HF patients enrolled in the Swedish Heart Failure Registry between 2000 and 2012. Random forest modeling demonstrated excellent calibration and discrimination for survival (C-statistic=0.83) whereas left ventricular ejection fraction did not (C-statistic=0.52): there were no meaningful differences per strata of left ventricular ejection fraction (1-year survival: 80%, 81%, 83%, and 84%). Cluster analysis using the 8 highest predictive variables identified 4 clinically relevant subgroups of HF with marked differences in 1-year survival. There were significant interactions between propensity-matched clusters (across age, sex, and left ventricular ejection fraction and the following medications: diuretics, angiotensin-converting enzyme inhibitors, β-blockers, and nitrates, <0.001, all).

CONCLUSIONS

Machine learning algorithms accurately predicted outcomes in a large data set of HF patients. Cluster analysis identified 4 distinct phenotypes that differed significantly in outcomes and in response to therapeutics. Use of these novel analytic approaches has the potential to enhance effectiveness of current therapies and transform future HF clinical trials.

摘要

背景

心力衰竭(HF)是一种复杂的临床综合征,但传统的管理方法将其视为单一疾病,导致患者护理不足和临床试验效率低下。我们假设,将先进的分析方法应用于大量 HF 患者中,将改善预后结果的预测能力,确定不同的患者表型,并检测治疗反应的异质性。

方法和结果

瑞典心力衰竭注册研究是一个全国性的注册研究,收集详细的人口统计学、临床、实验室和药物数据,并与具有结局信息的数据库相链接。我们应用随机森林模型来识别 1 年生存率的预测因素。使用串行 bootstrap 进行聚类分析和验证。使用 Cox 比例风险模型评估聚类与生存之间的关系,并进行交互检验,以评估 HF 药物治疗在倾向匹配聚类中的反应异质性。我们的研究纳入了 2000 年至 2012 年期间在瑞典心力衰竭注册研究中登记的 44886 例 HF 患者。随机森林模型在生存方面表现出良好的校准和区分能力(C 统计量=0.83),而左心室射血分数则不然(C 统计量=0.52):左心室射血分数各分层之间没有明显差异(1 年生存率:80%、81%、83%和 84%)。使用 8 个最高预测变量的聚类分析确定了 HF 的 4 个具有明显临床意义的亚组,在 1 年生存率方面存在显著差异。在倾向匹配的聚类之间存在显著的交互作用(跨越年龄、性别和左心室射血分数以及以下药物:利尿剂、血管紧张素转换酶抑制剂、β受体阻滞剂和硝酸盐,<0.001,均)。

结论

机器学习算法在 HF 患者的大型数据集上准确预测了结局。聚类分析确定了 4 个不同的表型,在结局和对治疗的反应方面存在显著差异。这些新的分析方法的应用有可能增强现有治疗的效果,并改变未来的 HF 临床试验。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ca/6015420/0f4f51807bbb/JAH3-7-e008081-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验