Boschker Jos E, Lü Xiang, Bragaglia Valeria, Wang Ruining, Grahn Holger T, Calarco Raffaella
Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e. V., Hausvogteiplatz 5-7, 10117, Berlin, Germany.
Leibniz Institute for Crystal Growth, Max Born Str. 2, 12489, Berlin, Germany.
Sci Rep. 2018 Apr 12;8(1):5889. doi: 10.1038/s41598-018-23221-9.
Phase change materials such as pseudobinary GeTe-SbTe (GST) alloys are an essential part of existing and emerging technologies. Here, we investigate the electrical and optical properties of epitaxial phase change materials: α-GeTe, GeSbTe5 (GST225), and SbTe. Temperature-dependent Hall measurements reveal a reduction of the hole concentration with increasing temperature in SbTe that is attributed to lattice expansion, resulting in a non-linear increase of the resistivity that is also observed in GST225. Fourier transform infrared spectroscopy at room temperature demonstrates the presence of electronic states within the energy gap for α-GeTe and GST225. We conclude that these electronic states are due to vacancy clusters inside these two materials. The obtained results shed new light on the fundamental properties of phase change materials such as the high dielectric constant and persistent photoconductivity and have the potential to be included in device simulations.
诸如伪二元GeTe-SbTe(GST)合金之类的相变材料是现有和新兴技术的重要组成部分。在此,我们研究外延相变材料α-GeTe、GeSbTe5(GST225)和SbTe的电学和光学性质。随温度变化的霍尔测量结果表明,SbTe中空穴浓度随温度升高而降低,这归因于晶格膨胀,导致电阻率呈非线性增加,这在GST225中也有观察到。室温下的傅里叶变换红外光谱表明,α-GeTe和GST225的能隙内存在电子态。我们得出结论,这些电子态是由于这两种材料内部的空位团簇所致。所获得的结果为相变材料的基本性质(如高介电常数和持久光电导性)提供了新的认识,并且有可能纳入器件模拟中。