Suppr超能文献

预测艾司西酞普兰暴露于母乳喂养婴儿:整合分析和计算技术。

Predicting Escitalopram Exposure to Breastfeeding Infants: Integrating Analytical and In Silico Techniques.

机构信息

Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.

School of Pharmacy, University of Waterloo, Waterloo, ON, Canada.

出版信息

Clin Pharmacokinet. 2018 Dec;57(12):1603-1611. doi: 10.1007/s40262-018-0657-2.

Abstract

BACKGROUND

Escitalopram is used for post-partum depression; however, there are limited pharmacokinetic data of escitalopram in milk and plasma of infants breastfed by women taking the drug.

OBJECTIVE

The objective of this study was to apply physiologically-based pharmacokinetic (PBPK) modelling to predict infant drug exposure (plasma area under the curve from time zero to infinity [AUC]) based on drug monitoring data of escitalopram in breast milk.

METHODS

Using a newly developed liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, we quantified escitalopram concentrations in milk samples of 18 breastfeeding women with escitalopram therapy at steady state, collected at three to five time points. The escitalopram concentrations in breast milk were used with infant feeding parameters from the literature to simulate infant daily dose. We used PK-Sim to develop an adult PBPK model for escitalopram and extrapolated it to a population of 1600 infants up to 12 months of age. An integration of the simulated infant daily dose and the virtual infants with variable physiological-pharmacological parameters was used to predict drug exposure (plasma AUC) distribution in the population of infants breastfed by women receiving escitalopram 20 mg/day.

RESULTS

Escitalopram concentrations in milk were 50 ± 17 ng/mL (mean ± standard deviation). The simulated infant plasma AUC following escitalopram exposure through breast milk was low, with a median of 1.7% (range 0.5-5.9%) of the corresponding maternal plasma AUC indicating no substantial exposure.

CONCLUSIONS

Infant exposure levels to escitalopram in breast milk are low. A PBPK modeling approach can be used to translate data on drug monitoring in milk into a population distribution of infant plasma levels for drug safety assessment.

摘要

背景

依地普仑被用于治疗产后抑郁症;然而,目前关于哺乳期妇女服用依地普仑后其药物在母乳和婴儿血浆中的药代动力学数据十分有限。

目的

本研究旨在应用基于生理的药代动力学(PBPK)模型,根据母乳中依地普仑的药物监测数据来预测婴儿的药物暴露(从时间零到无穷大的血浆曲线下面积[AUC])。

方法

我们使用一种新开发的液相色谱-串联质谱(LC-MS/MS)方法,定量了 18 名处于稳态依地普仑治疗中的哺乳期妇女的母乳样本中的依地普仑浓度,每个样本采集 3 至 5 个时间点的数据。将母乳中的依地普仑浓度与文献中的婴儿喂养参数结合,模拟婴儿的日剂量。我们使用 PK-Sim 开发了依地普仑的成人 PBPK 模型,并将其外推至 1600 名 12 个月以下的婴儿群体。将模拟的婴儿日剂量与具有可变生理-药理学参数的虚拟婴儿进行整合,以预测接受 20 mg/天依地普仑治疗的妇女所哺乳的婴儿群体中的药物暴露(血浆 AUC)分布。

结果

母乳中的依地普仑浓度为 50±17ng/mL(平均值±标准差)。通过母乳暴露于依地普仑后,婴儿血浆 AUC 的中位数为母体血浆 AUC 的 1.7%(范围 0.5-5.9%),表明婴儿暴露程度较低。

结论

婴儿从母乳中摄取的依地普仑水平较低。PBPK 建模方法可用于将母乳中药物监测数据转化为婴儿血浆水平的群体分布,以进行药物安全性评估。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验