Institute of Microbiology, ETH Zurich, Zurich, Switzerland.
PLoS Genet. 2018 Apr 13;14(4):e1007294. doi: 10.1371/journal.pgen.1007294. eCollection 2018 Apr.
Two-component systems constitute phosphotransfer signaling pathways and enable adaptation to environmental changes, an essential feature for bacterial survival. The general stress response (GSR) in the plant-protecting alphaproteobacterium Sphingomonas melonis Fr1 involves a two-component system consisting of multiple stress-sensing histidine kinases (Paks) and the response regulator PhyR; PhyR in turn regulates the alternative sigma factor EcfG, which controls expression of the GSR regulon. While Paks had been shown to phosphorylate PhyR in vitro, it remained unclear if and under which conditions direct phosphorylation happens in the cell, as Paks also phosphorylate the single domain response regulator SdrG, an essential yet enigmatic component of the GSR signaling pathway. Here, we analyze the role of SdrG and investigate an alternative function of the membrane-bound PhyP (here re-designated PhyT), previously assumed to act as a PhyR phosphatase. In vitro assays show that PhyT transfers a phosphoryl group from SdrG to PhyR via phosphoryl transfer on a conserved His residue. This finding, as well as complementary GSR reporter assays, indicate the participation of SdrG and PhyT in a Pak-SdrG-PhyT-PhyR phosphorelay. Furthermore, we demonstrate complex formation between PhyT and PhyR. This finding is substantiated by PhyT-dependent membrane association of PhyR in unstressed cells, while the response regulator is released from the membrane upon stress induction. Our data support a model in which PhyT sequesters PhyR, thereby favoring Pak-dependent phosphorylation of SdrG. In addition, PhyT assumes the role of the SdrG-phosphotransferase to activate PhyR. Our results place SdrG into the GSR signaling cascade and uncover a dual role of PhyT in the GSR.
双组分系统构成磷酸转移信号通路,使细菌能够适应环境变化,这是细菌生存的重要特征。植物保护的α变形菌鞘氨醇单胞菌 Fr1 的一般应激反应 (GSR) 涉及由多个应激感应组氨酸激酶 (Paks) 和响应调节剂 PhyR 组成的双组分系统;PhyR 反过来又调节替代 sigma 因子 EcfG,后者控制 GSR 调控子的表达。虽然已经证明 Paks 可以在体外磷酸化 PhyR,但仍然不清楚是否以及在何种条件下细胞内会发生直接磷酸化,因为 Paks 还磷酸化单结构域响应调节剂 SdrG,它是 GSR 信号通路的一个重要但神秘的组成部分。在这里,我们分析了 SdrG 的作用,并研究了先前被认为作为 PhyR 磷酸酶的膜结合 PhyP(此处重新指定为 PhyT)的替代功能。体外测定表明,PhyT 通过保守 His 残基上的磷酸转移,将磷酸基团从 SdrG 转移到 PhyR。这一发现以及互补的 GSR 报告基因测定表明,SdrG 和 PhyT 参与了 Pak-SdrG-PhyT-PhyR 磷酸传递级联反应。此外,我们证明了 PhyT 和 PhyR 之间的复合物形成。在未受应激的细胞中,PhyR 依赖于 PhyT 的膜结合证实了这一发现,而响应调节剂在应激诱导时从膜上释放。我们的数据支持这样一种模型,即 PhyT 隔离 PhyR,从而有利于 Pak 依赖性的 SdrG 磷酸化。此外,PhyT 承担 SdrG-磷酸转移酶的作用以激活 PhyR。我们的结果将 SdrG 置于 GSR 信号级联中,并揭示了 PhyT 在 GSR 中的双重作用。