Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA.
Biomolecular NMR Core Facility, Biological Sciences Division, The University of Chicago, Chicago, IL, USA.
Mol Microbiol. 2018 Jan;107(2):164-179. doi: 10.1111/mmi.13868. Epub 2017 Dec 8.
Bacterial signal transduction systems commonly use receiver (REC) domains, which regulate adaptive responses to the environment as a function of their phosphorylation state. REC domains control cell physiology through diverse mechanisms, many of which remain understudied. We have defined structural features that underlie activation of the multi-domain REC protein, PhyR, which functions as an anti-anti-σ factor and regulates transcription of genes required for stress adaptation and host-microbe interactions in Alphaproteobacteria. Though REC phosphorylation is necessary for PhyR function in vivo, we did not detect expected changes in inter-domain interactions upon phosphorylation by solution X-ray scattering. We sought to understand this result by defining additional molecular requirements for PhyR activation. We uncovered specific interactions between unphosphorylated PhyR and an intrinsically disordered region (IDR) of the anti-σ factor, NepR, by solution NMR spectroscopy. Our data support a model whereby nascent NepR(IDR)-PhyR interactions and REC phosphorylation coordinately impart the free energy to shift PhyR to an open, active conformation that binds and inhibits NepR. This mechanism ensures PhyR is activated only when NepR and an activating phosphoryl signal are present. Our study provides new structural understanding of the molecular regulatory logic underlying a conserved environmental response system.
细菌信号转导系统通常使用受体 (REC) 结构域,该结构域根据其磷酸化状态调节对环境的适应性反应。REC 结构域通过多种机制控制细胞生理学,其中许多机制仍在研究之中。我们已经确定了多结构域 REC 蛋白 PhyR 激活的结构特征,PhyR 作为一种抗反式作用因子,调节α变形菌中应激适应和宿主-微生物相互作用所需基因的转录。尽管 REC 磷酸化是 PhyR 在体内发挥功能所必需的,但通过溶液 X 射线散射,我们并未检测到磷酸化后结构域间相互作用的预期变化。我们通过定义 PhyR 激活的其他分子要求来试图理解这一结果。通过溶液 NMR 光谱学,我们发现了未磷酸化的 PhyR 和反式作用因子 NepR 的无规卷曲区域 (IDR) 之间的特定相互作用。我们的数据支持这样一种模型,即新生成的 NepR(IDR)-PhyR 相互作用和 REC 磷酸化共同赋予自由能,将 PhyR 转移到开放、活跃的构象,从而结合并抑制 NepR。这种机制确保只有当 NepR 和激活的磷酸化信号存在时,PhyR 才会被激活。我们的研究为保守的环境反应系统的分子调控逻辑提供了新的结构理解。