George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
Nat Commun. 2020 Jan 10;11(1):175. doi: 10.1038/s41467-019-13896-7.
Challenges in drug development of neurological diseases remain mainly ascribed to the blood-brain barrier (BBB). Despite the valuable contribution of animal models to drug discovery, it remains difficult to conduct mechanistic studies on the barrier function and interactions with drugs at molecular and cellular levels. Here we present a microphysiological platform that recapitulates the key structure and function of the human BBB and enables 3D mapping of nanoparticle distributions in the vascular and perivascular regions. We demonstrate on-chip mimicry of the BBB structure and function by cellular interactions, key gene expressions, low permeability, and 3D astrocytic network with reduced reactive gliosis and polarized aquaporin-4 (AQP4) distribution. Moreover, our model precisely captures 3D nanoparticle distributions at cellular levels and demonstrates the distinct cellular uptakes and BBB penetrations through receptor-mediated transcytosis. Our BBB platform may present a complementary in vitro model to animal models for prescreening drug candidates for the treatment of neurological diseases.
神经疾病药物研发面临的挑战主要归因于血脑屏障(BBB)。尽管动物模型对药物发现做出了宝贵贡献,但仍难以在分子和细胞水平上对屏障功能和与药物的相互作用进行机制研究。在这里,我们提出了一个微生理平台,该平台再现了人 BBB 的关键结构和功能,并能够在血管和血管周围区域对纳米颗粒的分布进行 3D 映射。我们通过细胞相互作用、关键基因表达、低渗透性和具有减少的反应性神经胶质增生和极化水通道蛋白-4(AQP4)分布的 3D 星形胶质细胞网络,在芯片上模拟 BBB 的结构和功能。此外,我们的模型精确地捕获了细胞水平上的 3D 纳米颗粒分布,并通过受体介导的胞吞作用证明了不同的细胞摄取和 BBB 穿透。我们的 BBB 平台可能为治疗神经疾病的候选药物的预筛选提供了一种与动物模型互补的体外模型。