Fensham J R, Bubner E, D'Antignana T, Landos M, Caraguel C G B
School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, South Australia, 5371, Australia; Future Fisheries Veterinary Services Pty Ltd, East Ballina, New South Wales, 2478, Australia.
Lincoln Marine Science Centre, School of Biological Sciences, Flinders University, Port Lincoln, South Australia, 5606, Australia.
Prev Vet Med. 2018 May 1;153:7-14. doi: 10.1016/j.prevetmed.2018.02.012. Epub 2018 Feb 24.
The Australian farmed yellowtail kingfish (Seriola lalandi, YTK) industry monitor skin fluke (Benedenia seriolae) and gill fluke (Zeuxapta seriolae) burden by pooling the fluke count of 10 hooked YTK. The random and systematic error of this sampling strategy was evaluated to assess potential impact on treatment decisions. Fluke abundance (fluke count per fish) in a study cage (estimated 30,502 fish) was assessed five times using the current sampling protocol and its repeatability was estimated the repeatability coefficient (CR) and the coefficient of variation (CV). Individual body weight, fork length, fluke abundance, prevalence, intensity (fluke count per infested fish) and density (fluke count per Kg of fish) were compared between 100 hooked and 100 seined YTK (assumed representative of the entire population) to estimate potential selection bias. Depending on the fluke species and age category, CR (expected difference in parasite count between 2 sampling iterations) ranged from 0.78 to 114 flukes per fish. Capturing YTK by hooking increased the selection of fish of a weight and length in the lowest 5th percentile of the cage (RR = 5.75, 95% CI: 2.06-16.03, P-value = 0.0001). These lower end YTK had on average an extra 31 juveniles and 6 adults Z. seriolae per Kg of fish and an extra 3 juvenile and 0.4 adult B. seriolae per Kg of fish, compared to the rest of the cage population (P-value < 0.05). Hooking YTK on the edge of the study cage biases sampling towards the smallest and most heavily infested fish in the population, resulting in poor repeatability (more variability amongst sampled fish) and an overestimation of parasite burden in the population. In this particular commercial situation these finding supported that health management program, where the finding of an underestimation of parasite burden could provide a production impact on the study population. In instances where fish populations and parasite burdens are more homogenous, sampling error may be less severe. Sampling error when capturing fish from sea cage is difficult to predict. The amplitude and direction of this error should be investigated for a given cultured fish species across a range of parasite burden and fish profile scenarios.
澳大利亚养殖的黄尾鰤(Seriola lalandi,YTK)产业通过汇总10条被钩住的黄尾鰤的吸虫计数来监测皮肤吸虫(Benedenia seriolae)和鳃吸虫(Zeuxapta seriolae)的负荷。对这种抽样策略的随机误差和系统误差进行了评估,以评估其对治疗决策的潜在影响。使用当前的抽样方案对一个研究网箱(估计有30,502条鱼)中的吸虫丰度(每条鱼的吸虫计数)进行了5次评估,并估计了其重复性系数(CR)和变异系数(CV)。比较了100条被钩住的黄尾鰤和100条围网捕捞的黄尾鰤(假定代表整个种群)的个体体重、叉长、吸虫丰度、患病率、强度(每条受感染鱼的吸虫计数)和密度(每千克鱼的吸虫计数),以估计潜在的选择偏差。根据吸虫种类和年龄类别,CR(两次抽样迭代之间寄生虫计数的预期差异)范围为每条鱼0.78至114条吸虫。通过挂钩捕获黄尾鰤增加了对网箱中体重和长度处于最低第5百分位数的鱼的选择(相对风险RR = 5.75,95%置信区间:2.06 - 16.03,P值 = 0.0001)。与网箱中的其他鱼相比,这些体型较小的黄尾鰤每千克鱼平均多有31条幼体和6条成年的Zeuxapta seriolae吸虫,以及每千克鱼多有3条幼体和0.4条成年的Benedenia seriolae吸虫(P值 < 0.05)。在研究网箱边缘用鱼钩钓黄尾鰤会使抽样偏向种群中最小且感染最严重的鱼,导致重复性差(抽样鱼之间的变异性更大),并高估种群中的寄生虫负荷。在这种特定的商业情况下,这些发现支持了健康管理计划,因为寄生虫负荷被低估的发现可能会对研究种群产生生产影响。在鱼群和寄生虫负荷更均匀的情况下,抽样误差可能不那么严重。从海上网箱捕捞鱼时的抽样误差很难预测。对于给定的养殖鱼类,应在一系列寄生虫负荷和鱼的特征情况下研究这种误差的幅度和方向。