Suppr超能文献

α-螺旋构象与淀粉样变性之间的关系。

The Relation between α-Helical Conformation and Amyloidogenicity.

机构信息

Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, Israel.

Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, Israel; Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, Israel.

出版信息

Biophys J. 2018 Apr 24;114(8):1869-1877. doi: 10.1016/j.bpj.2018.03.019. Epub 2018 Apr 10.

Abstract

Amyloid fibrils are stable aggregates of misfolded proteins and polypeptides that are insoluble and resistant to protease activity. Abnormal formation of amyloid fibrils in vivo may lead to neurodegenerative disorders and other systemic amyloidosis, such as Alzheimer's, Parkinson's, and atherosclerosis. Because of their clinical importance, amyloids are under intense scientific research. It is believed that short polypeptide segments within proteins are responsible for the transformation of correctly folded proteins into parts of larger amyloid fibrils and that this transition is modulated by environmental factors, such as pH, salt concentration, interaction with the cell membrane, and interaction with metal ions. Most studies on amyloids focus on the amyloidogenic sequences. The focus of this study is on the structure of the amyloidogenic α-helical segments because the α-helical secondary structure has been recognized to be a key player in different stages of the amyloidogenesis process. We have previously shown that the α-helical conformation may be expressed by two parameters (θ and ρ) that form orthogonal coordinates based on the Ramachandran dihedrals (φ and ψ) and provide an illuminating interpretation of the α-helical conformation. By performing statistical analysis on α-helical conformations found in the Protein Data Bank, an apparent relation between α-helical conformation, as expressed by θ and ρ, and amyloidogenicity is revealed. Remarkably, random amino acid sequences, whose helical structures were obtained from the most probable dihedral angles, revealed the same dependency of amyloidogenicity, suggesting the importance of α-helical structure as opposed to sequence.

摘要

淀粉样纤维是错误折叠的蛋白质和多肽的稳定聚集体,它们不溶且能抵抗蛋白酶的活性。体内淀粉样纤维的异常形成可能导致神经退行性疾病和其他系统性淀粉样变性,如阿尔茨海默病、帕金森病和动脉粥样硬化。由于其临床重要性,淀粉样纤维受到了强烈的科学研究。人们认为,蛋白质中的短多肽片段负责将正确折叠的蛋白质转化为较大淀粉样纤维的一部分,这种转变受环境因素的调节,如 pH 值、盐浓度、与细胞膜的相互作用以及与金属离子的相互作用。大多数关于淀粉样纤维的研究都集中在淀粉样蛋白序列上。本研究的重点是淀粉样蛋白形成的α-螺旋片段的结构,因为α-螺旋二级结构已被认为是淀粉样蛋白形成过程中不同阶段的关键因素。我们之前已经表明,α-螺旋构象可以通过两个参数(θ 和 ρ)来表达,这两个参数基于 Ramachandran 二面角(φ 和 ψ)形成正交坐标,并为α-螺旋构象提供了一个有启发性的解释。通过对蛋白质数据库中发现的α-螺旋构象进行统计分析,揭示了α-螺旋构象(由θ和ρ表示)与淀粉样变性之间的明显关系。值得注意的是,从最可能的二面角获得的螺旋结构的随机氨基酸序列显示出相同的淀粉样变性依赖性,这表明α-螺旋结构的重要性而不是序列的重要性。

相似文献

1
The Relation between α-Helical Conformation and Amyloidogenicity.
Biophys J. 2018 Apr 24;114(8):1869-1877. doi: 10.1016/j.bpj.2018.03.019. Epub 2018 Apr 10.
2
A closer look into the α-helix basin.
Sci Rep. 2016 Dec 5;6:38341. doi: 10.1038/srep38341.
3
Secondary Structure in Amyloids in Relation to Their Wild Type Forms.
Int J Mol Sci. 2022 Dec 21;24(1):154. doi: 10.3390/ijms24010154.
4
Protein denaturation and aggregation: Cellular responses to denatured and aggregated proteins.
Ann N Y Acad Sci. 2005 Dec;1066:181-221. doi: 10.1196/annals.1363.030.
5
Disulfide bonds in amyloidogenesis diseases related proteins.
Proteins. 2013 Nov;81(11):1862-73. doi: 10.1002/prot.24338. Epub 2013 Aug 19.
6
Membrane-induced initial structure of α-synuclein control its amyloidogenesis on model membranes.
Biochim Biophys Acta Biomembr. 2018 Mar;1860(3):757-766. doi: 10.1016/j.bbamem.2017.12.011. Epub 2017 Dec 19.
7
What can AlphaFold do for antimicrobial amyloids?
Proteins. 2024 Feb;92(2):265-281. doi: 10.1002/prot.26618. Epub 2023 Oct 19.

本文引用的文献

1
Cysteine as a potential anti-amyloidogenic agent with protective ability against amyloid induced cytotoxicity.
Int J Biol Macromol. 2017 Dec;105(Pt 1):556-565. doi: 10.1016/j.ijbiomac.2017.07.083. Epub 2017 Jul 15.
2
Implications of peptide assemblies in amyloid diseases.
Chem Soc Rev. 2017 Oct 30;46(21):6492-6531. doi: 10.1039/c7cs00372b.
3
Driving Forces for Nonnative Protein Aggregation and Approaches to Predict Aggregation-Prone Regions.
Annu Rev Chem Biomol Eng. 2017 Jun 7;8:139-159. doi: 10.1146/annurev-chembioeng-060816-101404.
4
A closer look into the α-helix basin.
Sci Rep. 2016 Dec 5;6:38341. doi: 10.1038/srep38341.
5
AmyLoad: website dedicated to amyloidogenic protein fragments.
Bioinformatics. 2015 Oct 15;31(20):3395-7. doi: 10.1093/bioinformatics/btv375. Epub 2015 Jun 17.
6
Nomenclature 2014: Amyloid fibril proteins and clinical classification of the amyloidosis.
Amyloid. 2014 Dec;21(4):221-4. doi: 10.3109/13506129.2014.964858. Epub 2014 Sep 29.
7
MetAmyl: a METa-predictor for AMYLoid proteins.
PLoS One. 2013 Nov 19;8(11):e79722. doi: 10.1371/journal.pone.0079722. eCollection 2013.
9
Fibril-forming motifs are essential and sufficient for the fibrillization of human Tau.
PLoS One. 2012;7(6):e38903. doi: 10.1371/journal.pone.0038903. Epub 2012 Jun 11.
10
Exploring the sequence determinants of amyloid structure using position-specific scoring matrices.
Nat Methods. 2010 Mar;7(3):237-42. doi: 10.1038/nmeth.1432. Epub 2010 Feb 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验