Suppr超能文献

骨密度能否提高骨折风险评估的预测准确性?丹麦北部的一项前瞻性队列研究。

Does bone mineral density improve the predictive accuracy of fracture risk assessment? A prospective cohort study in Northern Denmark.

作者信息

Dhiman Paula, Andersen Stig, Vestergaard Peter, Masud Tahir, Qureshi Nadeem

机构信息

Division of Primary Care, School of Medicine, University of Nottingham, Nottingham, UK.

Geriatric Medicine, Department of Clinical Medicine, Aalborg Universitetshospital, Aalborg, Denmark.

出版信息

BMJ Open. 2018 Apr 12;8(4):e018898. doi: 10.1136/bmjopen-2017-018898.

Abstract

OBJECTIVE

To evaluate the added predictive accuracy of bone mineral density (BMD) to fracture risk assessment.

DESIGN

Prospective cohort study using data between 01 January 2010 and 31 December 2012.

SETTING

North Denmark Osteoporosis Clinic of referred patients presenting with at least one fracture risk factor to the referring doctor.

PARTICIPANTS

Patients aged 40-90 years; had BMD T-score recorded at the hip and not taking osteoporotic preventing drugs for more than 1 year prior to baseline.

MAIN OUTCOME MEASURES

Incident diagnoses of osteoporotic fractures (hip, spine, forearm, humerus and pelvis) were identified using the National Patient Registry of Denmark during 01 January 2012-01 January 2014. Cox regression was used to develop a fracture model based on predictors in the Fracture Risk Assessment Tool (FRAX®), with and without, binary and continuous BMD. Change in Harrell's C-Index and Reclassification tables were used to describe the added statistical value of BMD.

RESULTS

Adjusting for predictors included in FRAX®, patients with osteoporosis (T-score ≤-2.5) had 75% higher hazard of a fracture compared with patients with higher BMD (HR: 1.75 (95% CI 1.28 to 2.38)). Forty per cent lower hazard was found per unit increase in continuous BMD T-score (HR: 0.60 (95% CI 0.52 to 0.69)).Accuracy improved marginally, and Harrell's C-Index increased by 1.2% when adding continuous BMD (0.76 to 0.77). Reclassification tables showed continuous BMD shifted 529 patients into different risk categories; 292 of these were reclassified correctly (57%; 95% CI 55% to 64%). Adding binary BMD however no improvement: Harrell's C-Index decreased by 0.6%.

CONCLUSIONS

Continuous BMD marginally improves fracture risk assessment. Importantly, this was only found when using continuous BMD measurement for osteoporosis. It is suggested that future focus should be on evaluation of this risk factor using routinely collected data and on the development of more clinically relevant methodology to assess the added value of a new risk factor.

摘要

目的

评估骨密度(BMD)对骨折风险评估的额外预测准确性。

设计

前瞻性队列研究,使用2010年1月1日至2012年12月31日期间的数据。

背景

丹麦北部骨质疏松症诊所,转诊医生将至少有一个骨折风险因素的患者转诊至此。

参与者

年龄在40 - 90岁之间;在基线前1年以上未服用骨质疏松预防药物,且记录了髋部骨密度T值。

主要观察指标

在2012年1月1日至2014年1月1日期间,使用丹麦国家患者登记处确定骨质疏松性骨折(髋部、脊柱、前臂、肱骨和骨盆)的发病诊断。使用Cox回归基于骨折风险评估工具(FRAX®)中的预测因子建立骨折模型,包括有无二元和连续骨密度。使用Harrell's C指数和重新分类表的变化来描述骨密度的额外统计价值。

结果

在调整FRAX®中包含的预测因子后,骨质疏松症患者(T值≤ - 2.5)的骨折风险比骨密度较高的患者高75%(风险比:1.75(95%可信区间1.28至2.38))。连续骨密度T值每增加一个单位,风险降低40%(风险比:0.60(95%可信区间0.52至0.69))。添加连续骨密度时,准确性略有提高,Harrell's C指数增加了1.2%(从0.76增加到0.77)。重新分类表显示,连续骨密度使529名患者进入不同风险类别;其中292名被正确重新分类(57%;95%可信区间5

相似文献

2
Low Predictive Value of FRAX Adjusted by Trabecular Bone Score for Osteoporotic Fractures in Korean Women: A Community-Based Cohort Study.
Endocrinol Metab (Seoul). 2020 Jun;35(2):359-366. doi: 10.3803/EnM.2020.35.2.359. Epub 2020 Jun 24.
4
Sarcopenia combined with FRAX probabilities improves fracture risk prediction in older Chinese men.
J Am Med Dir Assoc. 2014 Dec;15(12):918-23. doi: 10.1016/j.jamda.2014.07.011. Epub 2014 Sep 24.
5
Serial Bone Density Measurement and Incident Fracture Risk Discrimination in Postmenopausal Women.
JAMA Intern Med. 2020 Sep 1;180(9):1232-1240. doi: 10.1001/jamainternmed.2020.2986.
6
Repeat bone mineral density screening and prediction of hip and major osteoporotic fracture.
JAMA. 2013 Sep 25;310(12):1256-62. doi: 10.1001/jama.2013.277817.
7
Fracture prediction and calibration of a Canadian FRAX® tool: a population-based report from CaMos.
Osteoporos Int. 2011 Mar;22(3):829-37. doi: 10.1007/s00198-010-1465-1. Epub 2010 Dec 16.
8
Associations between ultra-distal forearm bone mineral density and incident fracture in women.
Osteoporos Int. 2024 Jun;35(6):1019-1027. doi: 10.1007/s00198-024-07041-4. Epub 2024 Mar 6.
9
Fracture risk prediction using phalangeal bone mineral density or FRAX(®)?-A Danish cohort study on men and women.
J Clin Densitom. 2014 Jan-Mar;17(1):7-15. doi: 10.1016/j.jocd.2013.03.014. Epub 2013 Apr 23.
10
Clinical risk factor status in patients with vertebral fracture but normal bone mineral density.
Spine J. 2022 Oct;22(10):1634-1641. doi: 10.1016/j.spinee.2022.05.019. Epub 2022 Jun 6.

引用本文的文献

1
Bone mineral content among Inuit - a systematic review of data.
Int J Circumpolar Health. 2025 Dec;84(1):2502249. doi: 10.1080/22423982.2025.2502249. Epub 2025 May 19.
2
Screening for primary prevention of fragility fractures: How much time does it take?
Can Fam Physician. 2023 Aug;69(8):537-541. doi: 10.46747/cfp.6908537.
3
Development and validation of common data model-based fracture prediction model using machine learning algorithm.
Osteoporos Int. 2023 Aug;34(8):1437-1451. doi: 10.1007/s00198-023-06787-7. Epub 2023 May 17.
4
Ireland DXA-FRAX may differ significantly and substantially to Web-FRAX.
Arch Osteoporos. 2023 Mar 20;18(1):43. doi: 10.1007/s11657-023-01232-y.
5
Quantitative ultrasound assessment of the effect of parity on bone mineral density in females.
BMC Womens Health. 2021 Oct 30;21(1):380. doi: 10.1186/s12905-021-01516-w.
6
Utility of fragility fracture prediction tools in a group of postmenopausal women.
Reumatologia. 2021;59(4):230-236. doi: 10.5114/reum.2021.108631. Epub 2021 Aug 20.

本文引用的文献

1
Do we need bone mineral density to estimate osteoporotic fracture risk? A 10-year prospective multicentre validation study.
RMD Open. 2017 Sep 26;3(2):e000509. doi: 10.1136/rmdopen-2017-000509. eCollection 2017.
3
FRAX®: prediction of major osteoporotic fractures in women from the general population: the OPUS study.
PLoS One. 2013 Dec 30;8(12):e83436. doi: 10.1371/journal.pone.0083436. eCollection 2013.
5
Fragility fractures of the pelvis.
Curr Rev Musculoskelet Med. 2012 Sep;5(3):222-8. doi: 10.1007/s12178-012-9128-9.
6
Fracture risk assessment.
Clin Biochem. 2012 Aug;45(12):887-93. doi: 10.1016/j.clinbiochem.2012.05.001. Epub 2012 May 8.
7
Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio)marker.
Heart. 2012 May;98(9):683-90. doi: 10.1136/heartjnl-2011-301246. Epub 2012 Mar 7.
8
Assessing the incremental value of diagnostic and prognostic markers: a review and illustration.
Eur J Clin Invest. 2012 Feb;42(2):216-28. doi: 10.1111/j.1365-2362.2011.02562.x. Epub 2011 Jul 5.
9
Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers.
Stat Med. 2011 Jan 15;30(1):11-21. doi: 10.1002/sim.4085. Epub 2010 Nov 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验