Suppr超能文献

提高第一性原理计算中电化学电容和溶剂化能的准确性。

Improving accuracy of electrochemical capacitance and solvation energetics in first-principles calculations.

机构信息

Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 8th St., Troy, New York 12180, USA.

Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439, USA.

出版信息

J Chem Phys. 2018 Apr 14;148(14):144105. doi: 10.1063/1.5024219.

Abstract

Reliable first-principles calculations of electrochemical processes require accurate prediction of the interfacial capacitance, a challenge for current computationally efficient continuum solvation methodologies. We develop a model for the double layer of a metallic electrode that reproduces the features of the experimental capacitance of Ag(100) in a non-adsorbing, aqueous electrolyte, including a broad hump in the capacitance near the potential of zero charge and a dip in the capacitance under conditions of low ionic strength. Using this model, we identify the necessary characteristics of a solvation model suitable for first-principles electrochemistry of metal surfaces in non-adsorbing, aqueous electrolytes: dielectric and ionic nonlinearity, and a dielectric-only region at the interface. The dielectric nonlinearity, caused by the saturation of dipole rotational response in water, creates the capacitance hump, while ionic nonlinearity, caused by the compactness of the diffuse layer, generates the capacitance dip seen at low ionic strength. We show that none of the previously developed solvation models simultaneously meet all these criteria. We design the nonlinear electrochemical soft-sphere solvation model which both captures the capacitance features observed experimentally and serves as a general-purpose continuum solvation model.

摘要

可靠的电化学过程的第一性原理计算需要准确预测界面电容,这是当前计算效率高的连续溶剂化方法的一个挑战。我们开发了一种金属电极双层模型,该模型再现了非吸附性水溶液中 Ag(100) 电容的实验特征,包括在零电荷电势附近的电容宽峰和在低离子强度条件下的电容下降。使用该模型,我们确定了适用于非吸附性水溶液中金属表面第一性原理电化学的溶剂化模型的必要特征:介电和离子非线性,以及界面处仅存在介电的区域。介电非线性是由水中偶极旋转响应的饱和引起的,它产生了电容峰,而离子非线性是由扩散层的紧密性引起的,它在低离子强度下产生了观察到的电容下降。我们表明,以前开发的任何溶剂化模型都不能同时满足所有这些标准。我们设计了非线性电化学软球溶剂化模型,该模型既可以捕捉到实验观察到的电容特征,又可以作为通用的连续溶剂化模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验