Theory and Simulations of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
Department of Physics, University of North Texas, Denton, Texas 76207, USA.
J Chem Phys. 2019 Jan 28;150(4):041722. doi: 10.1063/1.5054588.
Continuum electrolyte models represent a practical tool to account for the presence of the diffuse layer at electrochemical interfaces. However, despite the increasing popularity of these in the field of materials science, it remains unclear which features are necessary in order to accurately describe interface-related observables such as the differential capacitance (DC) of metal electrode surfaces. We present here a critical comparison of continuum diffuse-layer models that can be coupled to an atomistic first-principles description of the charged metal surface in order to account for the electrolyte screening at electrified interfaces. By comparing computed DC values for the prototypical Ag(100) surface in an aqueous solution to experimental data, we validate the accuracy of the models considered. Results suggest that a size-modified Poisson-Boltzmann description of the electrolyte solution is sufficient to qualitatively reproduce the main experimental trends. Our findings also highlight the large effect that the dielectric cavity parameterization has on the computed DC values.
连续电解质模型是一种实用的工具,可以用来描述电化学界面处的扩散层的存在。然而,尽管这些模型在材料科学领域越来越受欢迎,但仍不清楚为了准确描述与界面相关的可观测量(如金属电极表面的微分电容(DC)),需要具备哪些特征。我们在这里对可以与带电金属表面的原子第一性原理描述相结合的连续扩散层模型进行了批判性比较,以解释在带电界面处的电解质屏蔽。通过将计算得到的在水溶液中的典型 Ag(100)表面的 DC 值与实验数据进行比较,我们验证了所考虑模型的准确性。结果表明,对电解质溶液进行尺寸修正的泊松-玻尔兹曼描述足以定性地再现主要的实验趋势。我们的研究结果还突出表明,介电腔参数化对计算得到的 DC 值有很大的影响。