Suppr超能文献

评估电极-电解质界面的连续溶剂化模型:改进的挑战与策略。

Evaluating continuum solvation models for the electrode-electrolyte interface: Challenges and strategies for improvement.

机构信息

Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 8th St, Troy, New York 12180, USA.

National Institute of Standards and Technology, Material Measurement Laboratory, 100 Bureau Dr, Gaithersburg, Maryland 20899, USA.

出版信息

J Chem Phys. 2017 Feb 28;146(8):084111. doi: 10.1063/1.4976971.

Abstract

Ab initio modeling of electrochemical systems is becoming a key tool for understanding and predicting electrochemical behavior. Development and careful benchmarking of computational electrochemical methods are essential to ensure their accuracy. Here, using charging curves for an electrode in the presence of an inert aqueous electrolyte, we demonstrate that most continuum models, which are parameterized and benchmarked for molecules, anions, and cations in solution, undersolvate metal surfaces, and underestimate the surface charge as a function of applied potential. We examine features of the electrolyte and interface that are captured by these models and identify improvements necessary for realistic electrochemical calculations of metal surfaces. Finally, we reparameterize popular solvation models using the surface charge of Ag(100) as a function of voltage to find improved accuracy for metal surfaces without significant change in utility for molecular and ionic solvation.

摘要

电化学系统的从头建模正在成为理解和预测电化学行为的关键工具。开发和仔细基准测试计算电化学方法对于确保其准确性至关重要。在这里,我们使用惰性水性电解质存在下电极的充电曲线,证明了大多数连续体模型,这些模型是针对溶液中的分子、阴离子和阳离子以及参数化和基准测试的,对金属表面欠溶,并且低估了表面电荷作为施加电势的函数。我们研究了这些模型所捕捉的电解质和界面的特征,并确定了实现金属表面现实电化学计算所需的改进。最后,我们使用 Ag(100)的表面电荷作为电压的函数重新参数化流行的溶剂化模型,以找到金属表面的改进准确性,而分子和离子溶剂化的实用性没有显著变化。

相似文献

3
The electrochemical interface in first-principles calculations.
Surf Sci Rep. 2020 May;75(2). doi: 10.1016/j.surfrep.2020.100492.
4
Practical Considerations for Continuum Models Applied to Surface Electrochemistry.
Chemphyschem. 2019 Nov 19;20(22):3074-3080. doi: 10.1002/cphc.201900536. Epub 2019 Aug 14.
5
Properties of the Pt(111)/electrolyte electrochemical interface studied with a hybrid DFT-solvation approach.
J Phys Condens Matter. 2021 Aug 24;33(44). doi: 10.1088/1361-648X/ac1aa2.
6
Continuum models of the electrochemical diffuse layer in electronic-structure calculations.
J Chem Phys. 2019 Jan 28;150(4):041722. doi: 10.1063/1.5054588.
7
Computational Exploration of the Li-Electrode|Electrolyte Interface in the Presence of a Nanometer Thick Solid-Electrolyte Interphase Layer.
Acc Chem Res. 2016 Oct 18;49(10):2363-2370. doi: 10.1021/acs.accounts.6b00363. Epub 2016 Sep 30.
8
Electrochemical Surface Potential Due to Classical Point Charge Models Drives Anion Adsorption to the Air-Water Interface.
J Phys Chem Lett. 2012 Jun 7;3(11):1565-70. doi: 10.1021/jz300302t. Epub 2012 May 29.
9
Interface Properties of the Partially Oxidized Pt(111) Surface Using Hybrid DFT-Solvation Models.
ACS Appl Mater Interfaces. 2019 Nov 20;11(46):43774-43780. doi: 10.1021/acsami.9b16326. Epub 2019 Nov 7.

引用本文的文献

1
H-bonded organic frameworks as ultrasound-programmable delivery platform.
Nature. 2025 Feb;638(8050):401-410. doi: 10.1038/s41586-024-08401-0. Epub 2025 Feb 5.
3
Electric Double Layer Effects in Electrocatalysis: Insights from Ab Initio Simulation and Hierarchical Continuum Modeling.
JACS Au. 2023 Sep 18;3(10):2640-2659. doi: 10.1021/jacsau.3c00410. eCollection 2023 Oct 23.
4
Improving the Accuracy of Atomistic Simulations of the Electrochemical Interface.
Chem Rev. 2022 Jun 22;122(12):10651-10674. doi: 10.1021/acs.chemrev.1c00800. Epub 2022 May 6.
5
Implicit Solvation Methods for Catalysis at Electrified Interfaces.
Chem Rev. 2022 Jun 22;122(12):10777-10820. doi: 10.1021/acs.chemrev.1c00675. Epub 2021 Dec 20.
6
The electrochemical interface in first-principles calculations.
Surf Sci Rep. 2020 May;75(2). doi: 10.1016/j.surfrep.2020.100492.
8
Thermodynamic Cyclic Voltammograms Based on Calculations: Ag(111) in Halide-Containing Solutions.
J Chem Theory Comput. 2021 Mar 9;17(3):1782-1794. doi: 10.1021/acs.jctc.0c01166. Epub 2021 Feb 19.
9
Influence of Van der Waals Interactions on the Solvation Energies of Adsorbates at Pt-Based Electrocatalysts.
Chemphyschem. 2019 Nov 19;20(22):2968-2972. doi: 10.1002/cphc.201900512. Epub 2019 Aug 19.

本文引用的文献

1
JDFTx: software for joint density-functional theory.
SoftwareX. 2017;6:278-284. doi: 10.1016/j.softx.2017.10.006. Epub 2017 Nov 14.
2
Partial oxidation of step-bound water leads to anomalous pH effects on metal electrode step-edges.
Phys Chem Chem Phys. 2016 Jun 28;18(24):16216-23. doi: 10.1039/c6cp01652a. Epub 2016 Jun 2.
4
Contribution of Dielectric Screening to the Total Capacitance of Few-Layer Graphene Electrodes.
J Phys Chem Lett. 2016 Mar 3;7(5):789-94. doi: 10.1021/acs.jpclett.6b00047. Epub 2016 Feb 18.
5
A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments.
J Chem Phys. 2016 Jan 7;144(1):014103. doi: 10.1063/1.4939125.
7
Formic acid oxidation on platinum: a simple mechanistic study.
Phys Chem Chem Phys. 2015 Aug 28;17(32):20805-13. doi: 10.1039/c5cp03045e. Epub 2015 Jul 27.
9
The charge-asymmetric nonlocally determined local-electric (CANDLE) solvation model.
J Chem Phys. 2015 Feb 14;142(6):064107. doi: 10.1063/1.4907731.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验