CUO-Recherche, Médecine Régénératrice - Centre de recherche FRQS du CHU de Québec-Université Laval, Québec, Canada; Centre de Recherche en Organogénèse expérimentale de l'Université Laval/LOEX, Canada; Département d'Ophtalmologie, Faculté de médecine, Université Laval, Québec, QC, Canada; Département de Chirurgie, Faculté de médecine, Université Laval, Québec, QC, Canada.
CUO-Recherche, Médecine Régénératrice - Centre de recherche FRQS du CHU de Québec-Université Laval, Québec, Canada; Centre de Recherche en Organogénèse expérimentale de l'Université Laval/LOEX, Canada; Département d'Ophtalmologie, Faculté de médecine, Université Laval, Québec, QC, Canada.
Acta Biomater. 2018 Jun;73:312-325. doi: 10.1016/j.actbio.2018.04.021. Epub 2018 Apr 12.
The cornea is a transparent organ, highly specialized and unique that is continually subjected to abrasive forces and occasional mechanical or chemical trauma because of its anatomical localization. Upon injury, the extracellular matrix (ECM) rapidly changes to promote wound healing through integrin-dependent activation of specific signal transduction mediators whose contribution is to favor faster closure of the wound by altering the adhesive and migratory properties of the cells surrounding the damaged area. In this study, we exploited the human tissue-engineered cornea (hTECs) as a model to study the signal transduction pathways that participate to corneal wound healing. By exploiting both gene profiling and activated kinases arrays, we could demonstrate the occurrence of important alterations in the level of expression and activation of a few mediators from the PI3K/Akt and CREB pathways in response to the ECM remodeling taking place during wound healing of damaged hTECs. Pharmacological inhibition of CREB with C646 considerably accelerated wound closure compared to controls. This process was considerably accelerated further when both C646 and SC79, an Akt agonist, were added together to wounded hTECs. Therefore, our study demonstrate that proper corneal wound healing requires the activation of Akt together with the inhibition of CREB and that wound healing in vitro can be altered by the use of pharmacological inhibitors (such as C646) or agonists (such as SC79) of these mediators.
Corneal wounds account for a large proportion of all visual disabilities in North America. To our knowledge, this is the first time that a tissue-engineered human cornea (hTEC) entirely produced using normal untransformed human cells is used as a biomaterial to study the signal transduction pathways that are critical to corneal wound healing. Through the use of this biomaterial, we demonstrated that human corneal epithelial cells engaged in wound healing reduce phosphorylation of the signal transduction mediator CREB while, in the mean time, they increase that of AKT. By increasing the activation of AKT together with a decrease in CREB activation, we could considerably reduce wound closure time in our punch-damaged hTECs. Considering the increasing interest given to the reconstruction of different types of tissues, we believe these results will have a strong impact on the field of tissue-engineering and biomaterials. Altering the activation status of the Akt and CREB proteins might prove to be a therapeutically interesting avenue and may also find applications in wound healing of other tissues beside the cornea, such as the skin.
角膜是一种透明的器官,高度专业化且独特,由于其解剖定位,它会不断受到磨损力和偶尔的机械或化学创伤。受伤后,细胞外基质 (ECM) 会迅速变化,通过整合素依赖性激活特定信号转导介质来促进伤口愈合,这些介质的作用是通过改变受损区域周围细胞的粘附和迁移特性来加速伤口闭合。在这项研究中,我们利用人组织工程角膜 (hTECs) 作为模型来研究参与角膜伤口愈合的信号转导途径。通过利用基因谱和激活的激酶阵列,我们可以证明在 hTECs 受损后的 ECM 重塑过程中,PI3K/Akt 和 CREB 途径中的一些介质的表达和激活水平发生了重要变化。用 C646 抑制 CREB 的药理作用可显著加速与对照组相比的伤口闭合。当同时向受伤的 hTECs 添加 C646 和 Akt 激动剂 SC79 时,该过程会进一步加速。因此,我们的研究表明,适当的角膜伤口愈合需要 Akt 的激活以及 CREB 的抑制,并且可以通过使用这些介质的药理学抑制剂(如 C646)或激动剂(如 SC79)来改变体外伤口愈合。
角膜伤口占北美所有视力障碍的很大一部分。据我们所知,这是第一次使用完全使用正常未转化的人细胞制成的组织工程人角膜 (hTEC) 作为生物材料来研究对角膜伤口愈合至关重要的信号转导途径。通过使用这种生物材料,我们证明参与伤口愈合的人角膜上皮细胞减少了信号转导介质 CREB 的磷酸化,同时增加了 AKT 的磷酸化。通过增加 AKT 的激活并降低 CREB 的激活,我们可以大大缩短我们打孔损伤的 hTECs 的伤口闭合时间。考虑到人们对不同类型组织重建的兴趣日益增加,我们相信这些结果将对组织工程和生物材料领域产生重大影响。改变 Akt 和 CREB 蛋白的激活状态可能被证明是一种有治疗意义的途径,并且可能也适用于除角膜以外的其他组织的伤口愈合,例如皮肤。