表面化学、前驱体反应活性和温度之间的相互作用决定了CuInS纳米晶体上ZnS包覆反应的结果。

Interplay between Surface Chemistry, Precursor Reactivity, and Temperature Determines Outcome of ZnS Shelling Reactions on CuInS Nanocrystals.

作者信息

Berends Anne C, van der Stam Ward, Hofmann Jan P, Bladt Eva, Meeldijk Johannes D, Bals Sara, de Mello Donega Celso

机构信息

Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, Post Office Box 80000, 3508 TA Utrecht, The Netherlands.

Laboratory of Inorganic Materials Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Postbox 513, 5600 MB Eindhoven, The Netherlands.

出版信息

Chem Mater. 2018 Apr 10;30(7):2400-2413. doi: 10.1021/acs.chemmater.8b00477. Epub 2018 Mar 25.

Abstract

ZnS shelling of I-III-VI nanocrystals (NCs) invariably leads to blue-shifts in both the absorption and photoluminescence spectra. These observations imply that the outcome of ZnS shelling reactions on I-III-VI colloidal NCs results from a complex interplay between several processes taking place in solution, at the surface of, and within the seed NC. However, a fundamental understanding of the factors determining the balance between these different processes is still lacking. In this work, we address this need by investigating the impact of precursor reactivity, reaction temperature, and surface chemistry (due to the washing procedure) on the outcome of ZnS shelling reactions on CuInS NCs using a seeded growth approach. We demonstrate that low reaction temperatures (150 °C) favor etching, cation exchange, and alloying regardless of the precursors used. Heteroepitaxial shell overgrowth becomes the dominant process only if reactive S- and Zn-precursors (S-ODE/OLAM and ZnI) and high reaction temperatures (210 °C) are used, although a certain degree of heterointerfacial alloying still occurs. Remarkably, the presence of residual acetate at the surface of CIS seed NCs washed with ethanol is shown to facilitate heteroepitaxial shell overgrowth, yielding for the first time CIS/ZnS core/shell NCs displaying red-shifted absorption spectra, in agreement with the spectral shifts expected for a type-I band alignment. The insights provided by this work pave the way toward the design of improved synthesis strategies to CIS/ZnS core/shell and alloy NCs with tailored elemental distribution profiles, allowing precise tuning of the optoelectronic properties of the resulting materials.

摘要

对I-III-VI族纳米晶体(NCs)进行硫化锌包覆,总会导致吸收光谱和光致发光光谱出现蓝移。这些观察结果表明,I-III-VI族胶体纳米晶体上硫化锌包覆反应的结果,是溶液中、种子纳米晶体表面和内部发生的几个过程之间复杂相互作用的结果。然而,对于决定这些不同过程之间平衡的因素,仍缺乏基本的了解。在这项工作中,我们通过使用种子生长方法,研究前驱体反应性、反应温度和表面化学(由于洗涤过程)对硫化锌包覆反应在铜铟硫(CuInS)纳米晶体上的结果的影响,来满足这一需求。我们证明,无论使用何种前驱体,低反应温度(150°C)有利于蚀刻、阳离子交换和合金化。只有使用反应性硫和锌前驱体(硫代十八烷基醚/油胺(S-ODE/OLAM)和碘化锌(ZnI))以及高反应温度(210°C)时,异质外延壳层过度生长才会成为主导过程,尽管仍会发生一定程度的异质界面合金化。值得注意的是,在用乙醇洗涤的铜铟硫种子纳米晶体表面存在残留醋酸根,这被证明有助于异质外延壳层过度生长,首次得到了吸收光谱发生红移的铜铟硫/硫化锌核壳纳米晶体,这与I型能带排列预期的光谱位移一致。这项工作提供的见解为设计改进的合成策略铺平了道路,以制备具有定制元素分布轮廓的铜铟硫/硫化锌核壳和合金纳米晶体,从而能够精确调节所得材料的光电性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d700/5895981/245a66675eae/cm-2018-00477k_0007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索