Department of Chemical and Biomolecular Engineering, KAIST Institute for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Korea.
Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT) , Daejeon 34114, Korea.
ACS Nano. 2017 Dec 26;11(12):12461-12472. doi: 10.1021/acsnano.7b06542. Epub 2017 Nov 16.
To capitalize on shape- and structure-dependent properties of semiconductor nanorods (NRs), high-precision control and exquisite design of their growth are desired. Cadmium chalcogenide (CdE; E = S or Se) NRs are the most studied class of such, whose growth exhibits axial anisotropy, i.e., different growth rates along the opposite directions of {0001} planes. However, the mechanism behind asymmetric axial growth of NRs remains unclear because of the difficulty in instant analysis of growth surfaces. Here, we design colloidal dual-diameter semiconductor NRs (DDNRs) under the quantum confinement regime, which have two sections along the long axis with different diameters. The segmentation of the DDNRs allows rigorous assessment of the kinetics of NR growth at a molecular level. The reactivity of a terminal facet passivated by an organic ligand is governed by monomer diffusivity through the surface ligand monolayer. Therefore, the growth rate in two polar directions can be finely tuned by controlling the strength of ligand-ligand attraction at end surfaces. Building on these findings, we report the synthesis of single-diameter CdSe/CdS core/shell NRs with CdSe cores of controllable position, which reveals a strong structure-optical polarization relationship. The understanding of the NR growth mechanism with controllable anisotropy will serve as a cornerstone for the exquisite design of more complex anisotropic nanostructures.
为了充分利用半导体纳米棒(NRs)的形状和结构依赖性特性,需要对其生长进行高精度的控制和精密设计。镉硫属化物(CdE;E = S 或 Se)NRs 是此类研究最广泛的一类,其生长表现出轴向各向异性,即沿相反的{0001}平面的不同生长速率。然而,由于难以对生长表面进行即时分析,因此 NR 不对称轴向生长的机制仍不清楚。在这里,我们在量子限制条件下设计了胶体双直径半导体 NR(DDNRs),其沿长轴具有两个不同直径的部分。DDNRs 的分段允许在分子水平上严格评估 NR 生长的动力学。被有机配体钝化的末端表面的反应性受单体通过表面配体单层的扩散率控制。因此,可以通过控制末端表面的配体-配体吸引力来精细调整两个极向的生长速率。基于这些发现,我们报告了具有可控位置 CdSe 核的单直径 CdSe/CdS 核/壳 NR 的合成,这揭示了强烈的结构-光学偏振关系。对具有可控各向异性的 NR 生长机制的理解将成为更复杂各向异性纳米结构的精密设计的基石。