Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA.
Lab Chip. 2018 May 1;18(9):1369-1377. doi: 10.1039/c8lc00167g.
Herein, we report the development of a simple, high-throughput and efficient microfluidic system for synthesizing radioactive [18F]fallypride, a PET imaging radiotracer widely used in medical research. The microfluidic chip contains all essential modules required for the synthesis and purification of radioactive fallypride. The radiochemical yield of the tracer is sufficient for multiple animal injections for preclinical imaging studies. To produce the on-chip concentration and purification columns, we employ a simple "trapping" mechanism by inserting rows of square pillars with predefined gaps near the outlet of microchannel. Microspheres with appropriate functionality are suspended in solution and loaded into the microchannels to form columns for radioactivity concentration and product purification. Instead of relying on complicated flow control elements (e.g., micromechanical valves requiring complex external pneumatic actuation), external valves are utilized to control transfer of the reagents between different modules. The on-chip ion exchange column can efficiently capture [18F]fluoride with negligible loss (∼98% trapping efficiency), and subsequently release a burst of concentrated [18F]fluoride to the reaction cavity. A thin layer of PDMS with a small hole in the center facilitates rapid and reliable water evaporation (with the aid of azeotropic distillation and nitrogen flow) while reducing fluoride loss. During the solvent exchange and fluorination reaction, the entire chip is uniformly heated to the desired temperature using a hot plate. All aspects of the [18F]fallypride synthesis were monitored by high-performance liquid chromatography (HPLC) analysis, resulting in labelling efficiency in fluorination reaction ranging from 67-87% (n = 5). Moreover, after isolating unreacted [18F]fluoride, remaining fallypride precursor, and various by-products via an on-chip purification column, the eluted [18F]fallypride is radiochemically pure and of a sufficient quantity to allow for PET imaging (∼5 mCi). Finally, a positron emission tomography (PET) image of a rat brain injected with ∼300 μCi [18F]fallypride produced by our microfluidic chip is provided, demonstrating the utility of the product produced by the microfluidic reactor. With a short synthesis time (∼60 min) and a highly integrated on-chip modular configuration that allows for concentration, reaction, and product purification, our microfluidic chip offers numerous exciting advantages with the potential for applications in radiochemical research and clinical production. Moreover, due to its simplicity and potential for automation, we anticipate it may be easily integrated into a clinical environment.
在这里,我们报告了一种简单、高通量和高效的微流控系统的开发,用于合成放射性 [18F]fallypride,这是一种广泛用于医学研究的 PET 成像示踪剂。微流控芯片包含合成和纯化放射性 fallypride 所需的所有基本模块。示踪剂的放射化学产率足以进行多次动物注射,用于临床前成像研究。为了在芯片上产生浓缩和纯化柱,我们采用了一种简单的“捕获”机制,即在微通道出口附近插入具有预定间隙的排方柱。将具有适当功能的微球悬浮在溶液中并装入微通道中,形成用于放射性浓缩和产物纯化的柱。我们没有依赖于复杂的流量控制元件(例如需要复杂外部气动致动的微机械阀),而是使用外部阀来控制不同模块之间的试剂转移。芯片上的离子交换柱可以有效地捕获 [18F] 氟化物,几乎没有损失(约 98%的捕获效率),随后将一股浓缩的 [18F] 氟化物释放到反应腔中。在中心有一个小孔的薄层 PDMS 有助于快速可靠地蒸发水(借助共沸蒸馏和氮气流),同时减少氟化物的损失。在溶剂交换和氟化反应过程中,使用热板将整个芯片均匀加热至所需温度。通过高效液相色谱(HPLC)分析监测 [18F]fallypride 的合成的各个方面,导致氟化反应中的标记效率在 67-87%(n=5)之间。此外,通过芯片上的纯化柱分离未反应的 [18F] 氟化物、残留的 fallypride 前体和各种副产物后,洗脱的 [18F]fallypride 具有放射性化学纯度,并且数量足以进行 PET 成像(约 5 mCi)。最后,提供了通过我们的微流控芯片产生的约 300 μCi [18F]fallypride 注射到大鼠脑中的正电子发射断层扫描(PET)图像,证明了微流控反应器产生的产物的实用性。我们的微流控芯片具有短的合成时间(约 60 分钟)和高度集成的芯片模块配置,允许浓缩、反应和产物纯化,具有许多令人兴奋的优势,具有在放射性化学研究和临床生产中的应用潜力。此外,由于其简单性和自动化的潜力,我们预计它可以很容易地集成到临床环境中。