Suppr超能文献

功能获得性突变的 AtDICE1,编码一个假定的内质网定位的膜蛋白,通过干扰细胞壁完整性导致拟南芥中各向异性细胞伸长的缺陷。

Gain-of-function mutation of AtDICE1, encoding a putative endoplasmic reticulum-localized membrane protein, causes defects in anisotropic cell elongation by disturbing cell wall integrity in Arabidopsis.

机构信息

Department of Plant & Environmental New Resources, Kyung Hee University, Yongin, Republic of Korea.

Division of Forest Biotechnology, Korea Forest Research Institute, Suwon, Republic of Korea.

出版信息

Ann Bot. 2018 Jun 28;122(1):151-164. doi: 10.1093/aob/mcy049.

Abstract

BACKGROUND AND AIMS

Anisotropic cell elongation depends on cell wall relaxation and cellulose microfibril arrangement. The aim of this study was to characterize the molecular function of AtDICE1 encoding a novel transmembrane protein involved in anisotropic cell elongation in Arabidopsis.

METHODS

Phenotypic characterizations of transgenic Arabidopsis plants mis-regulating AtDICE1 expression with different pharmacological treatments were made, and biochemical, cell biological and transcriptome analyses were performed.

KEY RESULTS

Upregulation of AtDICE1 in Arabidopsis (35S::AtDICE1) resulted in severe dwarfism, probably caused by defects in anisotropic cell elongation. Epidermal cell swelling was evident in all tissues, and abnormal secondary wall thickenings were observed in pith cells of stems. These phenotypes were reproduced not only by inducible expression of AtDICE1 but also by overexpression of its poplar homologue in Arabidopsis. RNA interference suppression lines of AtDICE1 resulted in no observable phenotypic changes. Interestingly, wild-type plants treated with isoxaben, a cellulose biosynthesis inhibitor, phenocopied the 35S::AtDICE1 plants, suggesting that cellulose biosynthesis was compromised in the 35S::AtDICE1 plants. Indeed, disturbed cortical microtubule arrangements in 35S::AtDICE1/GFP-TuA6 plants were observed, and the cellulose content was significantly reduced in 35S::AtDICE1 plants. A promoter::GUS analysis showed that AtDICE1 is mainly expressed in vascular tissue, and transient expression of GFP:AtDICE1 in tobacco suggests that AtDICE1 is probably localized in the endoplasmic reticulum (ER). In addition, the external N-terminal conserved domain of AtDICE1 was found to be necessary for AtDICE1 function. Whole transcriptome analyses of 35S::AtDICE1 revealed that many genes involved in cell wall modification and stress/defence responses were mis-regulated.

CONCLUSIONS

AtDICE1, a novel ER-localized transmembrane protein, may contribute to anisotropic cell elongation in the formation of vascular tissue by affecting cellulose biosynthesis.

摘要

背景与目的

各向异性细胞伸长依赖于细胞壁松弛和纤维素微纤丝排列。本研究旨在对编码一种新型跨膜蛋白的 AtDICE1 进行分子功能鉴定,该蛋白参与拟南芥的各向异性细胞伸长。

方法

利用不同的药理学处理方法对调控 AtDICE1 表达的转基因拟南芥植株进行表型特征分析,并进行生化、细胞生物学和转录组分析。

结果

AtDICE1 在拟南芥中的过表达(35S::AtDICE1)导致严重的矮化,可能是由于各向异性细胞伸长缺陷所致。所有组织中都可见表皮细胞肿胀,茎的髓细胞中观察到异常的次生壁加厚。这些表型不仅可以通过诱导表达 AtDICE1 重现,也可以通过在拟南芥中过表达其杨树同源物重现。AtDICE1 的 RNAi 抑制系没有观察到表型变化。有趣的是,用纤维素生物合成抑制剂异恶唑草酮处理野生型植物,可模拟 35S::AtDICE1 植物的表型,表明 35S::AtDICE1 植物的纤维素生物合成受到了损害。事实上,在 35S::AtDICE1/GFP-TuA6 植物中观察到皮层微管排列紊乱,并且 35S::AtDICE1 植物的纤维素含量显著降低。启动子::GUS 分析表明,AtDICE1 主要在维管束组织中表达,GFP:AtDICE1 在烟草中的瞬时表达表明 AtDICE1 可能定位于内质网(ER)。此外,发现 AtDICE1 的外部 N 端保守结构域对于 AtDICE1 的功能是必需的。35S::AtDICE1 的全转录组分析表明,许多参与细胞壁修饰和应激/防御反应的基因发生了失调。

结论

AtDICE1 是一种新型的内质网定位跨膜蛋白,可能通过影响纤维素生物合成来促进血管组织中各向异性细胞的伸长。

相似文献

本文引用的文献

3
A Mechanism for Sustained Cellulose Synthesis during Salt Stress.盐胁迫下持续纤维素合成的机制。
Cell. 2015 Sep 10;162(6):1353-64. doi: 10.1016/j.cell.2015.08.028. Epub 2015 Sep 3.
7
The cell biology of cellulose synthesis.纤维素合成的细胞生物学。
Annu Rev Plant Biol. 2014;65:69-94. doi: 10.1146/annurev-arplant-050213-040240. Epub 2014 Feb 21.
8
The endoplasmic reticulum: a social network in plant cells.内质网:植物细胞中的社交网络。
J Integr Plant Biol. 2012 Nov;54(11):840-50. doi: 10.1111/j.1744-7909.2012.01176.x.
10
Growth control and cell wall signaling in plants.植物生长调控与细胞壁信号转导。
Annu Rev Plant Biol. 2012;63:381-407. doi: 10.1146/annurev-arplant-042811-105449. Epub 2012 Jan 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验