Messadi Mahammed, Bessaid Abdelhafid, Mariano-Goulart Denis, Bouallègue Fayçal Ben
Aboubakr Belkaid University, Biomedical Engineering Department, Tlemcen, Algeria.
Montpellier University Hospital, Nuclear Medicine Department, Montpellier, France.
J Med Imaging (Bellingham). 2018 Apr;5(2):024002. doi: 10.1117/1.JMI.5.2.024002. Epub 2018 Apr 11.
We describe a hybrid method for left ventricle (LV) endocardial and epicardial segmentation on cardiac magnetic resonance (CMR) images requiring minimal operator intervention. Endocardium extraction results from the union of three independent estimations based on adaptive thresholding, region growing, and active contour with Chan-Vese energy function. Epicardium segmentation relies on conditional morphological dilation of the endocardial mask followed by active contour optimization. The proposed method was first evaluated using an open access database of 18 CMR for which expert manual contouring was available. The method was further validated on a retrospective cohort of 29 patients, who underwent CMR with expert manual segmentation. Regarding the open access database, similarity (Dice index) between hybrid and expert segmentations was good for end-diastolic (ED) endocardium (0.92), end-systolic (ES) endocardium (0.88), and ED epicardium (0.92). As for derived LV parameters, concordance (Lin's coefficient) was good for ED volume (0.91), ES volume (0.93), ejection fraction (EF; 0.89), and fair for myocardial mass (MM; 0.74). Regarding the retrospective patient study, concordance between expert and hybrid estimations was excellent for ED volume (0.95), ES volume (0.96), good for EF (0.86), and fair for MM (0.71). Hybrid segmentation resulted in small biases ([Formula: see text] for ED volume, [Formula: see text] for ES volume, [Formula: see text] for EF, and [Formula: see text] for MM) with little clinical relevance and acceptable for routine practice. The quickness and robustness of the proposed hybrid method and its ability to provide LV volumes, functions, and masses highly concordant with those given by expert segmentation support its pertinence for routine clinical use.
我们描述了一种用于心脏磁共振(CMR)图像上左心室(LV)心内膜和心外膜分割的混合方法,该方法需要最少的操作员干预。心内膜提取是基于自适应阈值处理、区域生长以及具有Chan-Vese能量函数的活动轮廓这三种独立估计的联合结果。心外膜分割依赖于心内膜掩码的条件形态学膨胀,随后进行活动轮廓优化。首先使用一个包含18例CMR的开放获取数据库对所提出的方法进行评估,该数据库有专家手动勾勒的轮廓。该方法在一个由29例接受CMR且有专家手动分割的患者组成的回顾性队列中进一步得到验证。对于开放获取数据库,混合分割与专家分割之间的相似性(Dice指数)对于舒张末期(ED)心内膜(0.92)、收缩末期(ES)心内膜(0.88)和ED心外膜(0.92)而言良好。至于推导的左心室参数,一致性(Lin系数)对于ED容积(0.91)、ES容积(0.93)、射血分数(EF;0.89)而言良好,对于心肌质量(MM;0.74)而言一般。对于回顾性患者研究,专家估计与混合估计之间的一致性对于ED容积(0.95)、ES容积(0.96)而言极佳,对于EF(0.86)而言良好,对于MM(0.71)而言一般。混合分割产生的偏差较小(ED容积为[公式:见原文],ES容积为[公式:见原文],EF为[公式:见原文],MM为[公式:见原文]),临床相关性不大,在常规实践中可以接受。所提出的混合方法的快速性和稳健性及其提供与专家分割高度一致的左心室容积、功能和质量的能力支持了其在常规临床应用中的相关性。