Suppr超能文献

锂离子电池正极材料 LiNiMnCoO 在酸溶液中的溶解机制。

Dissolution Mechanisms of LiNiMnCoO Positive Electrode Material from Lithium-Ion Batteries in Acid Solution.

机构信息

Université Grenoble Alpes , F-38000 Grenoble , France.

CEA-LITEN , F-38054 Grenoble , France.

出版信息

ACS Appl Mater Interfaces. 2018 May 16;10(19):16424-16435. doi: 10.1021/acsami.8b01352. Epub 2018 May 4.

Abstract

The sustainability through the energy and environmental costs involve the development of new cathode materials, considering the material abundance, the toxicity, and the end of life. Currently, some synthesis methods of new cathode materials and a large majority of recycling processes are based on the use of acidic solutions. This study addresses the mechanistic and limiting aspects on the dissolution of the layered LiNiMnCoO oxide in acidic solution. The results show a dissolution of the active cathode material in two steps, which leads to the formation of a well-defined core-shell structure inducing an enrichment in manganese on the particle surface. The crucial role of lithium extraction is discussed and considered as the source of a "self-regulating" dissolution process. The delithiation involves a cumulative charge compensation by the cationic and anionic redox reactions. The electrons generated from the compensation of charge conduct to the dissolution by the protons. The delithiation and its implications on the side reactions, by the modification of the potential, explain the structural and compositional evolutions observed toward a composite material MnO·Li MO (M = Ni, Mn, and Co). The study shows a clear way to produce new cathode materials and recover transition metals from Li-ion batteries by hydrometallurgical processes.

摘要

通过能源和环境成本的可持续性涉及新型阴极材料的开发,需要考虑材料的丰富度、毒性和使用寿命。目前,一些新型阴极材料的合成方法和大多数回收工艺都基于使用酸性溶液。本研究探讨了在酸性溶液中分层 LiNiMnCoO 氧化物溶解的机理和限制因素。结果表明,活性阴极材料分两步溶解,导致形成明确的核壳结构,在颗粒表面富集锰。还讨论了锂离子提取的关键作用,并将其视为“自调节”溶解过程的来源。脱锂涉及通过阳离子和阴离子氧化还原反应的累积电荷补偿。由补偿电荷产生的电子通过质子传导到溶解中。脱锂及其对电位变化的影响,解释了观察到的复合材料 MnO·LiMO(M=Ni、Mn 和 Co)的结构和组成演变。该研究为通过湿法冶金工艺生产新型阴极材料和从锂离子电池中回收过渡金属提供了明确的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验