1 Department of Computer Science, Union College , Schenectady, New York.
2 Inria, Université de Lorraine , CNRS, LORIA, Nancy, France .
Soft Robot. 2018 Jun;5(3):318-329. doi: 10.1089/soro.2017.0066. Epub 2018 Apr 17.
Living organisms intertwine soft (e.g., muscle) and hard (e.g., bones) materials, giving them an intrinsic flexibility and resiliency often lacking in conventional rigid robots. The emerging field of soft robotics seeks to harness these same properties to create resilient machines. The nature of soft materials, however, presents considerable challenges to aspects of design, construction, and control-and up until now, the vast majority of gaits for soft robots have been hand-designed through empirical trial-and-error. This article describes an easy-to-assemble tensegrity-based soft robot capable of highly dynamic locomotive gaits and demonstrating structural and behavioral resilience in the face of physical damage. Enabling this is the use of a machine learning algorithm able to discover effective gaits with a minimal number of physical trials. These results lend further credence to soft-robotic approaches that seek to harness the interaction of complex material dynamics to generate a wealth of dynamical behaviors.
生物体交织软(如肌肉)和硬(如骨骼)材料,赋予它们内在的灵活性和弹性,而这往往是传统刚性机器人所缺乏的。新兴的软机器人技术领域试图利用这些特性来创造具有弹性的机器。然而,软材料的性质给设计、构建和控制的各个方面带来了相当大的挑战——到目前为止,大多数软机器人的步态都是通过经验试错法手工设计的。本文描述了一种易于组装的基于张拉整体结构的软机器人,它能够实现高度动态的运动步态,并在面对物理损坏时表现出结构和行为的弹性。这要归功于一种机器学习算法,它能够在最少的物理试验次数下发现有效的步态。这些结果进一步证明了软机器人技术的有效性,该技术试图利用复杂材料动力学的相互作用来产生大量的动力学行为。