From the School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom and.
J Biol Chem. 2014 Feb 21;289(8):5158-67. doi: 10.1074/jbc.M113.511204. Epub 2013 Dec 16.
The human hypertrophic cardiomyopathy mutation R453C results in one of the more severe forms of the myopathy. Arg-453 is found in a conserved surface loop of the upper 50-kDa domain of the myosin motor domain and lies between the nucleotide binding pocket and the actin binding site. It connects to the cardiomyopathy loop via a long α-helix, helix O, and to Switch-2 via the fifth strand of the central β-sheet. The mutation is, therefore, in a position to perturb a wide range of myosin molecular activities. We report here the first detailed biochemical kinetic analysis of the motor domain of the human β-cardiac myosin carrying the R453C mutation. A recent report of the same mutation (Sommese, R. F., Sung, J., Nag, S., Sutton, S., Deacon, J. C., Choe, E., Leinwand, L. A., Ruppel, K., and Spudich, J. A. (2013) Proc. Natl. Acad. Sci. U.S.A. 110, 12607-12612) found reduced ATPase and in vitro motility but increased force production using an optical trap. Surprisingly, our results show that the mutation alters few biochemical kinetic parameters significantly. The exceptions are the rate constants for ATP binding to the motor domain (reduced by 35%) and the ATP hydrolysis step/recovery stroke (slowed 3-fold), which could be the rate-limiting step for the ATPase cycle. Effects of the mutation on the recovery stroke are consistent with a perturbation of Switch-2 closure, which is required for the recovery stroke and the subsequent ATP hydrolysis.
人类肥厚型心肌病突变 R453C 导致了其中一种更为严重的肌病形式。Arg-453 位于肌球蛋白马达结构域的上 50kDa 结构域的保守表面环中,位于核苷酸结合口袋和肌动蛋白结合位点之间。它通过长α螺旋、螺旋 O 和中心β-折叠的第五股与心肌病环相连,通过 Switch-2 相连。因此,该突变处于能够干扰肌球蛋白分子广泛活动的位置。我们在这里报告了首例携带 R453C 突变的人类β-心脏肌球蛋白马达结构域的详细生化动力学分析。最近的一项研究报告(Sommese, R. F., Sung, J., Nag, S., Sutton, S., Deacon, J. C., Choe, E., Leinwand, L. A., Ruppel, K., and Spudich, J. A. (2013) Proc. Natl. Acad. Sci. U.S.A. 110, 12607-12612)报道了使用光学陷阱发现该突变降低了 ATPase 和体外运动性,但增加了力的产生。令人惊讶的是,我们的结果表明,该突变仅显著改变了少数生化动力学参数。例外的是肌球蛋白马达结构域与 ATP 结合的速率常数(降低了 35%)和 ATP 水解步骤/恢复冲程(减缓了 3 倍),这可能是 ATPase 循环的限速步骤。突变对恢复冲程的影响与 Switch-2 闭合的干扰一致,Switch-2 闭合是恢复冲程和随后的 ATP 水解所必需的。