Institute of Experimental and Applied Physics, University of Regensburg, D-93053 Regensburg, Germany;
Graduate School of Natural Science and Technology, Kanazawa University, 920-1192 Ishikawa, Japan.
Proc Natl Acad Sci U S A. 2018 May 1;115(18):4571-4576. doi: 10.1073/pnas.1721498115. Epub 2018 Apr 16.
The oscillation frequencies of a molecule on a surface are determined by the mass distribution in the molecule and the restoring forces that occur when the molecule bends. The restoring force originates from the atomic-scale interaction within the molecule and with the surface, which plays an essential role in the dynamics and reactivity of the molecule. In 1998, a combination of scanning tunneling microscopy with inelastic tunneling spectroscopy revealed the vibrational frequencies of single molecules adsorbed on a surface. However, the probe tip itself exerts forces on the molecule, changing its oscillation frequencies. Here, we combine atomic force microscopy with inelastic tunneling spectroscopy and measure the influence of the forces exerted by the tip on the lateral vibrational modes of a carbon monoxide molecule on a copper surface. Comparing the experimental data to a mechanical model of the vibrating molecule shows that the bonds within the molecule and with the surface are weakened by the proximity of the tip. This combination of techniques can be applied to analyze complex molecular vibrations and the mechanics of forming and loosening chemical bonds, as well as to study the mechanics of bond breaking in chemical reactions and atomic manipulation.
表面上分子的振动频率取决于分子中的质量分布以及分子弯曲时产生的恢复力。恢复力源于分子内和与表面的原子尺度相互作用,这在分子的动力学和反应性中起着至关重要的作用。1998 年,扫描隧道显微镜与非弹性隧道光谱学的结合揭示了吸附在表面上的单个分子的振动频率。然而,探针尖端本身对分子施加力,从而改变其振动频率。在这里,我们将原子力显微镜与非弹性隧道光谱学相结合,测量尖端施加的力对铜表面上一氧化碳分子横向振动模式的影响。将实验数据与振动分子的力学模型进行比较表明,分子内和与表面的键因尖端的接近而减弱。这种技术组合可用于分析复杂的分子振动以及形成和松开化学键的力学,以及研究化学反应和原子操纵中的键断裂力学。