Suppr超能文献

一种生物聚合物肝素钠夹层锚定 TiO 和 MAPbI 可增强钙钛矿太阳能电池中的陷阱钝化和器件稳定性。

A Biopolymer Heparin Sodium Interlayer Anchoring TiO and MAPbI Enhances Trap Passivation and Device Stability in Perovskite Solar Cells.

机构信息

National Center for Nanoscience and Technology, No. 11 ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China.

Collaborative Innovation Center of Henan Province for Energy-Saving Building Materials, Xinyang Normal University, 237 Nanhu Road, Xinyang, 464000, P. R. China.

出版信息

Adv Mater. 2018 May;30(22):e1706924. doi: 10.1002/adma.201706924. Epub 2018 Apr 18.

Abstract

Traps in the photoactive layer or interface can critically influence photovoltaic device characteristics and stabilities. Here, traps passivation and retardation on device degradation for methylammonium lead trihalide (MAPbI ) perovskite solar cells enabled by a biopolymer heparin sodium (HS) interfacial layer is investigated. The incorporated HS boosts the power conversion efficiency from 17.2 to 20.1% with suppressed hysteresis and Shockley-Read-Hall recombination, which originates primarily from the passivation of traps near the interface between the perovskites and the TiO cathode. The incorporation of an HS interfacial layer also leads to a considerable retardation of device degradation, by which 85% of the initial performance is maintained after 70 d storage in ambient environment. Aided by density functional theory calculations, it is found that the passivation of MAPbI and TiO surfaces by HS occurs through the interactions of the functional groups (COO , SO , or Na ) in HS with undersaturated Pb and I ions in MAPbI and Ti in TiO . This work demonstrates a highly viable and facile interface strategy using biomaterials to afford high-performance and stable perovskite solar cells.

摘要

陷阱在光活性层或界面中会严重影响光伏器件的特性和稳定性。在这里,通过使用生物聚合物肝素钠(HS)界面层,研究了在甲脒铅三卤化物(MAPbI )钙钛矿太阳能电池中,陷阱的钝化和延迟对器件降解的影响。掺入的 HS 提高了功率转换效率,从 17.2%提高到 20.1%,同时抑制了滞后和肖克利-里德-霍尔复合,这主要源于钙钛矿和 TiO 阴极之间界面处陷阱的钝化。HS 界面层的掺入也导致器件降解的明显延迟,在环境中储存 70 天后,初始性能的 85%得以维持。通过密度泛函理论计算发现,HS 通过其功能基团(COO 、SO 或 Na )与 MAPbI 中的未饱和 Pb 和 I 离子以及 TiO 中的 Ti 的相互作用,实现了对 MAPbI 和 TiO 表面的钝化。这项工作展示了一种使用生物材料实现高性能和稳定钙钛矿太阳能电池的极具可行性和简单的界面策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验