Ten Brinck Stephanie, Nieuwland Celine, van der Werf Angela, Veenboer Richard M P, Linnartz Harold, Bickelhaupt F Matthias, Fonseca Guerra Célia
Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands.
Laboratory for Astrophysics, Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden, The Netherlands.
ACS Earth Space Chem. 2022 Mar 17;6(3):766-774. doi: 10.1021/acsearthspacechem.1c00433. Epub 2022 Feb 21.
It has been experimentally observed that water-ice-embedded polycyclic aromatic hydrocarbons (PAHs) form radical cations when exposed to vacuum UV irradiation, whereas ammonia-embedded PAHs lead to the formation of radical anions. In this study, we explain this phenomenon by investigating the fundamental electronic differences between water and ammonia, the implications of these differences on the PAH-water and PAH-ammonia interaction, and the possible ionization pathways in these complexes using density functional theory (DFT) computations. In the framework of the Kohn-Sham molecular orbital (MO) theory, we show that the ionic state of the PAH photoproducts results from the degree of occupied-occupied MO mixing between the PAHs and the matrix molecules. When interacting with the PAH, the lone pair-type highest occupied molecular orbital (HOMO) of water has poor orbital overlap and is too low in energy to mix with the filled π-orbitals of the PAH. As the lone-pair HOMO of ammonia is significantly higher in energy and has better overlap with filled π-orbitals of the PAH, the subsequent Pauli repulsion leads to mixed MOs with both PAH and ammonia character. By time-dependent DFT calculations, we demonstrate that the formation of mixed PAH-ammonia MOs opens alternative charge-transfer excitation pathways as now electronic density from ammonia can be transferred to unoccupied PAH levels, yielding anionic PAHs. As this pathway is much less available for water-embedded PAHs, charge transfer mainly occurs from localized PAH MOs to mixed PAH-water virtual levels, leading to cationic PAHs.
实验观察到,嵌入水冰中的多环芳烃(PAHs)在受到真空紫外线照射时会形成自由基阳离子,而嵌入氨中的PAHs则会导致自由基阴离子的形成。在本研究中,我们通过使用密度泛函理论(DFT)计算来研究水和氨之间的基本电子差异、这些差异对PAH-水和PAH-氨相互作用的影响以及这些复合物中可能的电离途径,从而解释这一现象。在Kohn-Sham分子轨道(MO)理论的框架下,我们表明PAH光产物的离子状态源于PAHs与基质分子之间占据-占据MO混合的程度。与PAH相互作用时,水的孤对型最高占据分子轨道(HOMO)轨道重叠较差,能量过低,无法与PAH的填充π轨道混合。由于氨的孤对HOMO能量明显更高,且与PAH的填充π轨道有更好的重叠,随后的泡利排斥导致形成具有PAH和氨特征的混合MO。通过含时DFT计算,我们证明混合PAH-氨MO的形成开辟了替代的电荷转移激发途径,因为现在氨的电子密度可以转移到未占据的PAH能级,产生阴离子PAHs。由于这条途径对于嵌入水的PAHs来说不太可行,电荷转移主要发生在局域化的PAH MO到混合PAH-水虚拟能级之间,导致阳离子PAHs的形成。