Suppr超能文献

对下一代胶质母细胞瘤进行测序。

Sequencing the next generation of glioblastomas.

机构信息

a Medical Center for Molecular Biology, Institute of Biochemistry, Faculty of Medicine , University of Ljubljana , Ljubljana , Slovenia.

出版信息

Crit Rev Clin Lab Sci. 2018 Jun;55(4):264-282. doi: 10.1080/10408363.2018.1462759. Epub 2018 Apr 18.

Abstract

The most aggressive brain malignancy, glioblastoma, accounts for 60-70% of all gliomas and is uniformly fatal. According to the molecular signature, glioblastoma is divided into four subtypes (proneural, neural, classical, and mesenchymal), each with its own genetic background. The Cancer Genome Atlas project provides information about the most common genetic changes in glioblastoma. They involve mutations in TP53, TERT, and PTEN, and amplifications in EFGR, PDGFRA, CDK4, CDK6, MDM2, and MDM4. Recently, epigenetics was used to demonstrate the oncogenic roles of miR-124, miR-137, and miR-128. The most important findings so far are mutations in IDH1/2 and MGMT promoter methylation, which are routinely used as predictive biomarkers in patient care. Current clinical treatment leaves patients with only a 10% chance for 5-year survival. Attempts to define the mutational profile of glioblastoma to identify clinically relevant changes have not yet yielded significant results. This can be attributed to inter- and intra-tumor heterogeneity that is present in most glioblastomas, as well as hypermutation that appears as a consequence of chemotherapy. The evolving field of radiogenomics aims to classify glioblastoma using a combination of magnetic resonance imaging and genomic information. In the era of genomic medicine, next-generation sequencing is extensively used in glioblastoma research because it can detect multiple changes in a single biological sample; its potential in detecting circulating cell-free DNA has been tested in cerebrospinal fluid and plasma, and it shows promise in the examination of the cellular content of extracellular vesicles as a potential source of biomarkers. Next-generation sequencing is making its way into glioblastoma diagnostics. Gene panels like GlioSeq, which includes the most commonly mutated genes, are currently being tested on snap frozen and formalin fixed paraffin embedded tissues. This new methodology is helping to define the "next generation of glioblastomas" - clinically defined and better understood, with greater potential to improve patient care. However, limitations of the necessary infrastructure, space for data storage, technical expertise, and data ownership need to be considered carefully.

摘要

最具侵袭性的脑恶性肿瘤,胶质母细胞瘤,占所有神经胶质瘤的 60-70%,且均为致命性疾病。根据分子特征,胶质母细胞瘤分为四个亚型(前神经型、神经型、经典型和间充质型),每个亚型都有其自身的遗传背景。癌症基因组图谱项目提供了胶质母细胞瘤最常见遗传改变的信息。它们涉及 TP53、TERT 和 PTEN 的突变,以及 EGFR、PDGFRA、CDK4、CDK6、MDM2 和 MDM4 的扩增。最近,表观遗传学被用于证明 miR-124、miR-137 和 miR-128 的致癌作用。迄今为止最重要的发现是 IDH1/2 突变和 MGMT 启动子甲基化,这些突变目前常规用于患者治疗的预测生物标志物。目前的临床治疗方法使患者 5 年生存率仅为 10%。尝试定义胶质母细胞瘤的突变谱以确定临床相关的变化尚未产生显著结果。这可能归因于大多数胶质母细胞瘤中存在的肿瘤内和肿瘤间异质性,以及化疗导致的超突变。放射基因组学这一新兴领域旨在使用磁共振成像和基因组信息对胶质母细胞瘤进行分类。在基因组医学时代,下一代测序被广泛应用于胶质母细胞瘤研究,因为它可以在单个生物样本中检测到多种变化;其在检测脑脊液和血浆中游离细胞循环 DNA 方面的潜力已得到测试,并且在检查细胞外囊泡的细胞内容物作为生物标志物的潜在来源方面显示出前景。下一代测序正在进入胶质母细胞瘤诊断领域。基因面板,如 GlioSeq,包括最常见的突变基因,目前正在对冷冻和福尔马林固定石蜡包埋组织进行测试。这种新方法有助于定义“下一代胶质母细胞瘤”-在临床上定义更清楚,有更大的潜力改善患者的护理。然而,需要仔细考虑必要的基础设施、数据存储空间、技术专业知识和数据所有权方面的限制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验