Suppr超能文献

利用基因本体关系注释蛋白质-蛋白质相互作用中的激活/抑制关系。

Annotating activation/inhibition relationships to protein-protein interactions using gene ontology relations.

作者信息

Yim Soorin, Yu Hasun, Jang Dongjin, Lee Doheon

机构信息

Department of Bio and Brain Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.

Bio-Synergy Research Center, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.

出版信息

BMC Syst Biol. 2018 Apr 11;12(Suppl 1):9. doi: 10.1186/s12918-018-0535-4.

Abstract

BACKGROUND

Signaling pathways can be reconstructed by identifying 'effect types' (i.e. activation/inhibition) of protein-protein interactions (PPIs). Effect types are composed of 'directions' (i.e. upstream/downstream) and 'signs' (i.e. positive/negative), thereby requiring directions as well as signs of PPIs to predict signaling events from PPI networks. Here, we propose a computational method for systemically annotating effect types to PPIs using relations between functional information of proteins.

RESULTS

We used regulates, positively regulates, and negatively regulates relations in Gene Ontology (GO) to predict directions and signs of PPIs. These relations indicate both directions and signs between GO terms so that we can project directions and signs between relevant GO terms to PPIs. Independent test results showed that our method is effective for predicting both directions and signs of PPIs. Moreover, our method outperformed a previous GO-based method that did not consider the relations between GO terms. We annotated effect types to human PPIs and validated several highly confident effect types against literature. The annotated human PPIs are available in Additional file 2 to aid signaling pathway reconstruction and network biology research.

CONCLUSIONS

We annotated effect types to PPIs by using regulates, positively regulates, and negatively regulates relations in GO. We demonstrated that those relations are effective for predicting not only signs, but also directions of PPIs. The usefulness of those relations suggests their potential applications to other types of interactions such as protein-DNA interactions.

摘要

背景

通过识别蛋白质-蛋白质相互作用(PPI)的“效应类型”(即激活/抑制)可以重建信号通路。效应类型由“方向”(即上游/下游)和“符号”(即正/负)组成,因此需要PPI的方向以及符号来从PPI网络预测信号事件。在此,我们提出一种计算方法,用于利用蛋白质功能信息之间的关系对PPI的效应类型进行系统注释。

结果

我们使用基因本体论(GO)中的调控、正向调控和负向调控关系来预测PPI的方向和符号。这些关系表明了GO术语之间的方向和符号,以便我们能够将相关GO术语之间的方向和符号投射到PPI上。独立测试结果表明,我们的方法在预测PPI的方向和符号方面都是有效的。此外,我们的方法优于之前基于GO但未考虑GO术语之间关系的方法。我们对人类PPI的效应类型进行了注释,并根据文献验证了几种高度可信的效应类型。注释后的人类PPI可在附加文件2中获取,以辅助信号通路重建和网络生物学研究。

结论

我们通过使用GO中的调控、正向调控和负向调控关系对PPI的效应类型进行了注释。我们证明这些关系不仅对预测PPI的符号有效,而且对预测其方向也有效。这些关系的实用性表明它们在其他类型的相互作用(如蛋白质-DNA相互作用)中的潜在应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cb8/5907154/655b0e0785c4/12918_2018_535_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验