Barcelona Supercomputing Center, Barcelona, Spain.
Computer Architecture Department, Universitat Politècnica de Catalunya, Barcelona, Spain.
PLoS Comput Biol. 2020 Dec 2;16(12):e1008464. doi: 10.1371/journal.pcbi.1008464. eCollection 2020 Dec.
Elucidating the causal mechanisms responsible for disease can reveal potential therapeutic targets for pharmacological intervention and, accordingly, guide drug repositioning and discovery. In essence, the topology of a network can reveal the impact a drug candidate may have on a given biological state, leading the way for enhanced disease characterization and the design of advanced therapies. Network-based approaches, in particular, are highly suited for these purposes as they hold the capacity to identify the molecular mechanisms underlying disease. Here, we present drug2ways, a novel methodology that leverages multimodal causal networks for predicting drug candidates. Drug2ways implements an efficient algorithm which reasons over causal paths in large-scale biological networks to propose drug candidates for a given disease. We validate our approach using clinical trial information and demonstrate how drug2ways can be used for multiple applications to identify: i) single-target drug candidates, ii) candidates with polypharmacological properties that can optimize multiple targets, and iii) candidates for combination therapy. Finally, we make drug2ways available to the scientific community as a Python package that enables conducting these applications on multiple standard network formats.
阐明导致疾病的因果机制可以揭示潜在的药物干预治疗靶点,并相应地指导药物重定位和发现。从本质上讲,网络的拓扑结构可以揭示候选药物可能对特定生物状态产生的影响,为增强疾病特征描述和先进疗法的设计开辟道路。基于网络的方法特别适合这些目的,因为它们有能力识别疾病的分子机制。在这里,我们提出了 drug2ways,这是一种利用多模态因果网络来预测候选药物的新方法。Drug2ways 实现了一种有效的算法,该算法可以在大规模生物网络中对因果路径进行推理,从而为给定疾病提出候选药物。我们使用临床试验信息验证了我们的方法,并展示了 drug2ways 如何用于多种应用,以识别:i)单靶标药物候选物,ii)具有多药理学特性的候选物,可优化多个靶标,以及 iii)联合治疗候选物。最后,我们将 drug2ways 作为一个 Python 包提供给科学界,使人们能够在多种标准网络格式上进行这些应用。