Suppr超能文献

Drug2ways:在生物网络中进行药物发现的因果路径推理。

Drug2ways: Reasoning over causal paths in biological networks for drug discovery.

机构信息

Barcelona Supercomputing Center, Barcelona, Spain.

Computer Architecture Department, Universitat Politècnica de Catalunya, Barcelona, Spain.

出版信息

PLoS Comput Biol. 2020 Dec 2;16(12):e1008464. doi: 10.1371/journal.pcbi.1008464. eCollection 2020 Dec.

Abstract

Elucidating the causal mechanisms responsible for disease can reveal potential therapeutic targets for pharmacological intervention and, accordingly, guide drug repositioning and discovery. In essence, the topology of a network can reveal the impact a drug candidate may have on a given biological state, leading the way for enhanced disease characterization and the design of advanced therapies. Network-based approaches, in particular, are highly suited for these purposes as they hold the capacity to identify the molecular mechanisms underlying disease. Here, we present drug2ways, a novel methodology that leverages multimodal causal networks for predicting drug candidates. Drug2ways implements an efficient algorithm which reasons over causal paths in large-scale biological networks to propose drug candidates for a given disease. We validate our approach using clinical trial information and demonstrate how drug2ways can be used for multiple applications to identify: i) single-target drug candidates, ii) candidates with polypharmacological properties that can optimize multiple targets, and iii) candidates for combination therapy. Finally, we make drug2ways available to the scientific community as a Python package that enables conducting these applications on multiple standard network formats.

摘要

阐明导致疾病的因果机制可以揭示潜在的药物干预治疗靶点,并相应地指导药物重定位和发现。从本质上讲,网络的拓扑结构可以揭示候选药物可能对特定生物状态产生的影响,为增强疾病特征描述和先进疗法的设计开辟道路。基于网络的方法特别适合这些目的,因为它们有能力识别疾病的分子机制。在这里,我们提出了 drug2ways,这是一种利用多模态因果网络来预测候选药物的新方法。Drug2ways 实现了一种有效的算法,该算法可以在大规模生物网络中对因果路径进行推理,从而为给定疾病提出候选药物。我们使用临床试验信息验证了我们的方法,并展示了 drug2ways 如何用于多种应用,以识别:i)单靶标药物候选物,ii)具有多药理学特性的候选物,可优化多个靶标,以及 iii)联合治疗候选物。最后,我们将 drug2ways 作为一个 Python 包提供给科学界,使人们能够在多种标准网络格式上进行这些应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0651/7735677/fc6a95161cf7/pcbi.1008464.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验