ACS Appl Mater Interfaces. 2018 May 16;10(19):16707-16714. doi: 10.1021/acsami.8b01285. Epub 2018 May 1.
Ion accessibility, large surface area, and complete wetting of a carbonaceous electrode by the electrolyte are crucial for high-performance electrochemical double-layer capacitors. Herein, we report a facile and scalable method to prepare electrode-electrolyte hybrid materials, where an ionic liquid (IL) electrolyte is encapsulated within a shell of reduced graphene oxide (rGO) nanosheets as the active electrode material (called rGO-IL capsules). These structures were templated using a Pickering emulsion consisting of a dispersed phase of 1-methyl-3-butylimidazolium hexafluorophosphate ([bmim][PF]) and a continuous water phase; graphene oxide nanosheets were used as the surfactant, and interfacial polymerization yielded polyurea that bound the nanosheets together to form the capsule shell. This method prevents the aggregation and restacking of GO nanosheets and allows wetting of the materials by IL. The chemical composition, thermal properties, morphology, and electrochemical behavior of these new hybrid architectures are fully characterized. Specific capacitances of 80 F g at 18 °C and 127 F g at 60 °C were achieved at a scan rate of 10 mV s for symmetric coin cells of rGO-IL capsules. These architected materials have higher capacitance at low temperature (18 °C) across many scan rates (10-500 mV s) compared with analogous cells with the porous carbon YP-50. These results demonstrate a distinct and important methodology to enhance the performance of electrochemical double-layer capacitors by incorporating electrolyte and carbon material together during synthesis.
离子可及性、大表面积和电解质对碳质电极的完全润湿对于高性能电化学双层电容器至关重要。在此,我们报告了一种简便且可扩展的方法来制备电极-电解质混合材料,其中离子液体 (IL) 电解质被封装在还原氧化石墨烯 (rGO) 纳米片的壳内作为活性电极材料(称为 rGO-IL 胶囊)。这些结构是使用由 1-甲基-3-丁基咪唑六氟磷酸盐 ([bmim][PF]) 分散相和连续水相组成的 Pickering 乳液模板化的;氧化石墨烯纳米片用作表面活性剂,界面聚合生成将纳米片结合在一起形成胶囊壳的聚脲。该方法防止了 GO 纳米片的聚集和堆叠,并允许 IL 润湿材料。这些新的混合结构的化学组成、热性能、形态和电化学行为得到了充分的表征。对称硬币电池的 rGO-IL 胶囊在扫描速率为 10 mV s 时,在 18°C 时的比电容为 80 F g,在 60°C 时的比电容为 127 F g。与具有多孔碳 YP-50 的类似电池相比,这些结构材料在许多扫描速率(10-500 mV s)下在低温(18°C)下具有更高的电容。这些结果表明,通过在合成过程中同时结合电解质和碳材料,是一种显著且重要的提高电化学双层电容器性能的方法。