Suppr超能文献

在观察性数据中估计长期治疗效果:在现实世界不确定性下不同方法性能的比较。

Estimating long-term treatment effects in observational data: A comparison of the performance of different methods under real-world uncertainty.

机构信息

Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK.

Division of Population Medicine, Cardiff University, Cardiff, UK.

出版信息

Stat Med. 2018 Jul 10;37(15):2367-2390. doi: 10.1002/sim.7664. Epub 2018 Apr 19.

Abstract

In the presence of time-dependent confounding, there are several methods available to estimate treatment effects. With correctly specified models and appropriate structural assumptions, any of these methods could provide consistent effect estimates, but with real-world data, all models will be misspecified and it is difficult to know if assumptions are violated. In this paper, we investigate five methods: inverse probability weighting of marginal structural models, history-adjusted marginal structural models, sequential conditional mean models, g-computation formula, and g-estimation of structural nested models. This work is motivated by an investigation of the effects of treatments in cystic fibrosis using the UK Cystic Fibrosis Registry data focussing on two outcomes: lung function (continuous outcome) and annual number of days receiving intravenous antibiotics (count outcome). We identified five features of this data that may affect the performance of the methods: misspecification of the causal null, long-term treatment effects, effect modification by time-varying covariates, misspecification of the direction of causal pathways, and censoring. In simulation studies, under ideal settings, all five methods provide consistent estimates of the treatment effect with little difference between methods. However, all methods performed poorly under some settings, highlighting the importance of using appropriate methods based on the data available. Furthermore, with the count outcome, the issue of non-collapsibility makes comparison between methods delivering marginal and conditional effects difficult. In many situations, we would recommend using more than one of the available methods for analysis, as if the effect estimates are very different, this would indicate potential issues with the analyses.

摘要

在存在时依混淆的情况下,有几种方法可用于估计治疗效果。在正确指定的模型和适当的结构假设下,这些方法中的任何一种都可以提供一致的效果估计,但在实际数据中,所有模型都会被错误指定,并且很难知道假设是否被违反。在本文中,我们研究了五种方法:边际结构模型的逆概率加权、历史调整边际结构模型、序贯条件均值模型、g-运算公式和结构嵌套模型的 g-估计。这项工作的动机是使用英国囊性纤维化登记处的数据调查囊性纤维化治疗效果,重点关注两个结果:肺功能(连续结果)和每年接受静脉抗生素治疗的天数(计数结果)。我们确定了可能影响方法性能的五个数据特征:因果零假设的指定错误、长期治疗效果、随时间变化的协变量的效果修饰、因果途径方向的指定错误和删失。在模拟研究中,在理想条件下,所有五种方法都提供了治疗效果的一致估计,方法之间几乎没有差异。然而,在某些情况下,所有方法的性能都很差,这强调了根据可用数据使用适当方法的重要性。此外,对于计数结果,非可加性问题使得比较提供边际和条件效果的方法变得困难。在许多情况下,我们建议使用多种可用方法进行分析,因为如果效果估计差异很大,这将表明分析存在潜在问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/745d/6001810/09ecdda34ef4/SIM-37-2367-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验