Suppr超能文献

调整时变混杂因素的因果模型——文献系统综述。

Causal models adjusting for time-varying confounding-a systematic review of the literature.

机构信息

National Drug and Alcohol Research Centre, UNSW Sydney, Sydney, NSW, Australia.

出版信息

Int J Epidemiol. 2019 Feb 1;48(1):254-265. doi: 10.1093/ije/dyy218.

Abstract

BACKGROUND

Obtaining unbiased causal estimates from longitudinal observational data can be difficult due to exposure-affected time-varying confounding. The past decade has seen considerable development in methods for analysing such complex longitudinal data. However, the extent to which those methods have been implemented is unclear. This study describes and characterizes the state of the field in methods adjusting for exposure-affected time-varying confounding, and examines their use in the literature.

METHODS

We systematically reviewed the literature from 2000 to 2016 for studies adjusting for time-dependent confounding, including use of specific methods like inverse probability of treatment weighting (IPTW). Articles were coded based on the methods used and, for applied articles, the topic areas covered.

RESULTS

We screened 4239 abstracts, and subsequently reviewed 1100 articles, leaving 542 relevant articles in the analyses. The number of published articles increased from two in 2000, to 112 in 2016. This increase was primarily in applied articles using IPTW, which increased from one study in 2000, to 90 in 2016. Of the 432 studies with applications to observed data, 60.9% were on at least one of: HIV (30.6%), cardiopulmonary health (13.2%), kidney disease (11.8%) or mental health (10.0%).

CONCLUSIONS

There has been marked growth in reports addressing exposure-affected time-varying confounding. This was driven by work in a small number of topic areas, with other areas showing relatively little uptake. In addition, despite developments in more advanced methods such doubly robust techniques and estimation via machine learning, implementation has been largely concentrated on the simpler, yet potentially less robust, IPTW.

摘要

背景

由于暴露相关的时变混杂,从纵向观察性数据中获得无偏因果估计可能具有挑战性。过去十年中,用于分析此类复杂纵向数据的方法有了相当大的发展。然而,这些方法的实施程度尚不清楚。本研究描述并描述了调整暴露相关时变混杂的领域的状态,并检查了它们在文献中的使用情况。

方法

我们系统地回顾了 2000 年至 2016 年期间调整时间相关混杂的文献,包括使用特定方法(如治疗反概率加权(IPTW))。根据使用的方法和应用文章涵盖的主题领域对文章进行编码。

结果

我们筛选了 4239 篇摘要,随后回顾了 1100 篇文章,在分析中留下了 542 篇相关文章。发表的文章数量从 2000 年的 2 篇增加到 2016 年的 112 篇。这种增加主要是在应用 IPTW 的应用文章中,从 2000 年的一项研究增加到 2016 年的 90 项研究。在 432 项针对观察数据的应用研究中,有 60.9%的研究涉及以下至少一个领域:艾滋病毒(30.6%)、心肺健康(13.2%)、肾脏疾病(11.8%)或心理健康(10.0%)。

结论

解决暴露相关时变混杂的报告数量显著增长。这是由少数几个主题领域的工作推动的,而其他领域的采用相对较少。此外,尽管更先进的方法(如双重稳健技术和通过机器学习进行估计)有了发展,但实施主要集中在更简单但潜在稳健性较差的 IPTW 上。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验