Suppr超能文献

二元结局和高维协变量数据的点暴露研究中的效应估计——靶向最大似然估计与治疗权重逆概率的比较

Effect Estimation in Point-Exposure Studies with Binary Outcomes and High-Dimensional Covariate Data - A Comparison of Targeted Maximum Likelihood Estimation and Inverse Probability of Treatment Weighting.

作者信息

Pang Menglan, Schuster Tibor, Filion Kristian B, Schnitzer Mireille E, Eberg Maria, Platt Robert W

出版信息

Int J Biostat. 2016 Nov 1;12(2). doi: 10.1515/ijb-2015-0034.

Abstract

Inverse probability of treatment weighting (IPW) and targeted maximum likelihood estimation (TMLE) are relatively new methods proposed for estimating marginal causal effects. TMLE is doubly robust, yielding consistent estimators even under misspecification of either the treatment or the outcome model. While IPW methods are known to be sensitive to near violations of the practical positivity assumption (e. g., in the case of data sparsity), the consequences of this violation in the TMLE framework for binary outcomes have been less widely investigated. As near practical positivity violations are particularly likely in high-dimensional covariate settings, a better understanding of the performance of TMLE is of particular interest for pharmcoepidemiological studies using large databases. Using plasmode and Monte-Carlo simulation studies, we evaluated the performance of TMLE compared to that of IPW estimators based on a point-exposure cohort study of the marginal causal effect of post-myocardial infarction statin use on the 1-year risk of all-cause mortality from the Clinical Practice Research Datalink. A variety of treatment model specifications were considered, inducing different degrees of near practical non-positivity. Our simulation study showed that the performance of the TMLE and IPW estimators were comparable when the dimension of the fitted treatment model was small to moderate; however, they differed when a large number of covariates was considered. When a rich outcome model was included in the TMLE, estimators were unbiased. In some cases, we found irregular bias and large standard errors with both methods even with a correctly specified high-dimensional treatment model. The IPW estimator showed a slightly better root MSE with high-dimensional treatment model specifications in our simulation setting. In conclusion, for estimation of the marginal expectation of the outcome under a fixed treatment, TMLE and IPW estimators employing the same treatment model specification may perform differently due to differential sensitivity to practical positivity violations; however, TMLE, being doubly robust, shows improved performance with richer specifications of the outcome model. Although TMLE is appealing for its double robustness property, such violations in a high-dimensional covariate setting are problematic for both methods.

摘要

治疗权重逆概率法(IPW)和靶向最大似然估计法(TMLE)是为估计边际因果效应而提出的相对较新的方法。TMLE具有双重稳健性,即使在治疗模型或结局模型设定错误的情况下,也能产生一致的估计量。虽然已知IPW方法对实际正性假设的近似违背很敏感(例如,在数据稀疏的情况下),但在二元结局的TMLE框架中,这种违背的后果尚未得到广泛研究。由于在高维协变量设置中特别容易出现近似实际正性违背的情况,因此对于使用大型数据库的药物流行病学研究来说,更好地了解TMLE的性能尤为重要。通过虚拟模型和蒙特卡洛模拟研究,我们基于一项关于心肌梗死后他汀类药物使用对临床实践研究数据链中全因死亡1年风险的边际因果效应的点暴露队列研究,评估了TMLE与IPW估计量的性能。我们考虑了各种治疗模型设定,这些设定会导致不同程度的近似实际非正性。我们的模拟研究表明,当拟合的治疗模型维度较小到中等时,TMLE和IPW估计量的性能相当;然而,当考虑大量协变量时,它们有所不同。当TMLE中包含丰富的结局模型时,估计量是无偏的。在某些情况下,即使使用正确设定的高维治疗模型,我们发现两种方法都存在不规则偏差和较大的标准误。在我们的模拟设置中,IPW估计量在高维治疗模型设定下显示出略好的均方根误差。总之,对于固定治疗下结局的边际期望估计,采用相同治疗模型设定的TMLE和IPW估计量可能因对实际正性违背的敏感性不同而表现不同;然而,具有双重稳健性的TMLE在结局模型设定更丰富时表现出更好的性能。尽管TMLE因其双重稳健性而具有吸引力,但在高维协变量设置中,这种违背对两种方法来说都是有问题的。

相似文献

4
Collaborative double robust targeted maximum likelihood estimation.协作双稳健靶向最大似然估计
Int J Biostat. 2010 May 17;6(1):Article 17. doi: 10.2202/1557-4679.1181.
10
Targeted maximum likelihood estimation in safety analysis.目标最大似然估计在安全性分析中的应用。
J Clin Epidemiol. 2013 Aug;66(8 Suppl):S91-8. doi: 10.1016/j.jclinepi.2013.02.017.

引用本文的文献

本文引用的文献

7
Targeted maximum likelihood estimation in safety analysis.目标最大似然估计在安全性分析中的应用。
J Clin Epidemiol. 2013 Aug;66(8 Suppl):S91-8. doi: 10.1016/j.jclinepi.2013.02.017.
8
A general implementation of TMLE for longitudinal data applied to causal inference in survival analysis.用于生存分析中因果推断的纵向数据的TMLE一般实现。
Int J Biostat. 2012 Sep 18;8(1):/j/ijb.2012.8.issue-1/1557-4679.1334/1557-4679.1334.xml. doi: 10.1515/1557-4679.1334.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验