Suppr超能文献

精神病高危个体的静息态连接动力学。

Resting state connectivity dynamics in individuals at risk for psychosis.

机构信息

Department of Psychology and Neuroscience, University of Colorado Boulder.

Department of Psychology, University of Arizona.

出版信息

J Abnorm Psychol. 2018 Apr;127(3):314-325. doi: 10.1037/abn0000330.

Abstract

Clarifying dynamic fluctuations in resting-state connectivity in individuals at risk for psychosis (termed clinical high risk [CHR]) may inform understanding of psychotic disorders, such as schizophrenia, which have been associated with dysconnectivity and aberrant salience processing. Dynamic functional connectivity (DFC) investigations provide insight into how neural networks exchange information over time. Currently, there are no published DFC studies involving CHR individuals. This is notable, because understanding how networks may come together and disassociate over time could lend insight into the neural communication that underlies psychosis development and symptomatology. A sliding-window analysis was utilized to examine DFC (defined as the standard deviation over a series of sliding windows) in resting-state scans in a total of 31 CHR individuals and 28 controls. Clinical assessments at baseline and 12 months later were conducted. CHR participants exhibited less DFC (lower standard deviation) in connectivity involving areas of both the salience network (SN) and default mode network (DMN) with regions involved in sensory, motor, attention, and internal cognitive functions relative to controls. Within CHR participants, this pattern was associated with greater positive symptoms 12 months later, possibly reflecting a mechanism behind aberrant salience processing. Higher SN-DMN internetwork DFC related to elevated baseline negative symptoms, anxiety, and depression in CHR participants, which may indicate neurological processes underlying worry and rumination. Overall, through highlighting unique DFC properties within CHR individuals and detecting informative links with clinically relevant symptomatology, results support dysconnectivity and aberrant salience processing models of psychosis. (PsycINFO Database Record

摘要

澄清处于精神病风险(称为临床高风险 [CHR])个体的静息状态连接的动态波动,可能有助于理解精神分裂症等精神障碍,这些障碍与连接不良和异常突显处理有关。动态功能连接(DFC)研究提供了对神经网络随时间交换信息的深入了解。目前,尚无涉及 CHR 个体的 DFC 研究发表。这很值得注意,因为了解网络如何随时间聚集和分离,可能有助于深入了解潜在的神经通讯,这些通讯是精神疾病发展和症状的基础。滑动窗口分析用于检查静息状态扫描中总共 31 名 CHR 个体和 28 名对照者的 DFC(定义为一系列滑动窗口的标准差)。在基线和 12 个月后进行临床评估。与对照组相比,CHR 参与者在涉及突显网络(SN)和默认模式网络(DMN)的连接中表现出较低的 DFC(较低的标准差),这些连接涉及感觉、运动、注意力和内部认知功能区域。在 CHR 参与者中,这种模式与 12 个月后更多的阳性症状相关,可能反映了异常突显处理背后的机制。更高的 SN-DMN 网络间 DFC 与 CHR 参与者的基线阴性症状、焦虑和抑郁升高相关,这可能表明担忧和沉思的神经过程。总的来说,通过突出 CHR 个体中独特的 DFC 特性,并检测与临床相关症状的信息性联系,结果支持精神分裂症的连接不良和异常突显处理模型。

相似文献

引用本文的文献

4
Longitudinal Gray Matter Development Associated With Psychotic Experiences in Young People.年轻人中与精神病体验相关的纵向灰质发育
Biol Psychiatry Glob Open Sci. 2022 Feb 17;3(2):264-273. doi: 10.1016/j.bpsgos.2022.02.003. eCollection 2023 Apr.

本文引用的文献

1
The dysconnection hypothesis (2016).失连接假说(2016年)
Schizophr Res. 2016 Oct;176(2-3):83-94. doi: 10.1016/j.schres.2016.07.014. Epub 2016 Jul 20.
6
Dynamic Resting-State Functional Connectivity in Major Depression.重度抑郁症中的动态静息态功能连接
Neuropsychopharmacology. 2016 Jun;41(7):1822-30. doi: 10.1038/npp.2015.352. Epub 2015 Dec 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验