Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
Department of Psychiatry, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
Hum Brain Mapp. 2021 Feb 1;42(2):439-451. doi: 10.1002/hbm.25235. Epub 2020 Oct 13.
The ability to identify biomarkers of psychosis risk is essential in defining effective preventive measures to potentially circumvent the transition to psychosis. Using samples of people at clinical high risk for psychosis (CHR) and Healthy controls (HC) who were administered a task fMRI paradigm, we used a framework for labelling time windows of fMRI scans as 'integrated' FC networks to provide a granular representation of functional connectivity (FC). Periods of integration were defined using the 'cartographic profile' of time windows and k-means clustering, and sub-network discovery was carried out using Network Based Statistics (NBS). There were no network differences between CHR and HC groups. Within the CHR group, using integrated FC networks, we identified a sub-network negatively associated with longitudinal changes in the severity of psychotic symptoms. This sub-network comprised brain areas implicated in bottom-up sensory processing and in integration with motor control, suggesting it may be related to the demands of the fMRI task. These data suggest that extracting integrated FC networks may be useful in the investigation of biomarkers of psychosis risk.
识别精神病风险生物标志物对于确定有效的预防措施至关重要,这些措施可能有助于避免向精神病转化。本研究使用处于精神病临床高风险(CHR)和健康对照(HC)的人群样本,对其进行功能磁共振成像(fMRI)任务范式,并采用标记 fMRI 扫描时间窗为“整合”功能连接(FC)网络的框架,提供功能连接的细粒度表示。使用时间窗的“制图特征”和 K 均值聚类来定义整合期,使用基于网络的统计学(NBS)进行子网发现。CHR 和 HC 组之间没有网络差异。在 CHR 组中,使用整合 FC 网络,我们确定了一个与精神病症状严重程度的纵向变化呈负相关的子网。该子网包括与感觉处理和与运动控制整合有关的脑区,表明它可能与 fMRI 任务的要求有关。这些数据表明,提取整合的 FC 网络可能有助于研究精神病风险的生物标志物。