Suppr超能文献

连续给予一氧化二氮后大鼠代谢率和行为性体温调节的浓度相关性适应。

Concentration-related metabolic rate and behavioral thermoregulatory adaptations to serial administrations of nitrous oxide in rats.

机构信息

Department of Oral Health Sciences at the University of Washington, Seattle, WA, United States of America.

出版信息

PLoS One. 2018 Apr 19;13(4):e0194794. doi: 10.1371/journal.pone.0194794. eCollection 2018.

Abstract

BACKGROUND

Initial administration of ≥60% nitrous oxide (N2O) to rats evokes hypothermia, but after repeated administrations the gas instead evokes hyperthermia. This sign reversal is driven mainly by increased heat production. To determine whether rats will behaviorally oppose or assist the development of hyperthermia, we previously performed thermal gradient testing. Inhalation of N2O at ≥60% causes rats to select cooler ambient temperatures both during initial administrations and during subsequent administrations in which the hyperthermic state exists. Thus, an available behavioral response opposes (but does not completely prevent) the acquired hyperthermia that develops over repeated high-concentration N2O administrations. However, recreational and clinical uses of N2O span a wide range of concentrations. Therefore, we sought to determine the thermoregulatory adaptations to chronic N2O administration over a wide range of concentrations.

METHODS

This study had two phases. In the first phase we adapted rats to twelve 3-h N2O administrations at either 0%, 15%, 30%, 45%, 60% or 75% N2O (n = 12 per group); outcomes were core temperature (via telemetry) and heat production (via respirometry). In the second phase, we used a thermal gradient (range 8°C-38°C) to assess each adapted group's thermal preference, core temperature and locomotion on a single occasion during N2O inhalation at the assigned concentration.

RESULTS

In phase 1, repeated N2O administrations led to dose related hyperthermic and hypermetabolic states during inhalation of ≥45% N2O compared to controls (≥ 30% N2O compared to baseline). In phase 2, rats in these groups selected cooler ambient temperatures during N2O inhalation but still developed some hyperthermia. However, a concentration-related increase of locomotion was evident in the gradient, and theoretical calculations and regression analyses both suggest that locomotion contributed to the residual hyperthermia.

CONCLUSIONS

Acquired N2O hyperthermia in rats is remarkably robust, and occurs even despite the availability of ambient temperatures that might fully counter the hyperthermia. Increased locomotion in the gradient may contribute to hyperthermia. Our data are consistent with an allostatic dis-coordination of autonomic and behavioral thermoregulatory mechanisms during drug administration. Our results have implications for research on N2O abuse as well as research on the role of allostasis in drug addiction.

摘要

背景

最初给予大鼠≥60%的氧化亚氮(N2O)会导致体温降低,但在反复给予后,气体反而会引起体温升高。这种现象的逆转主要是由于产热增加所致。为了确定大鼠是否会在行为上反对或协助体温升高的发展,我们之前进行了热梯度测试。在≥60%的 N2O 吸入时,大鼠在初次给予 N2O 以及在随后存在体温升高状态的情况下,都会选择较凉爽的环境温度。因此,一种可用的行为反应会(但不能完全阻止)在反复给予高浓度 N2O 后产生的获得性体温升高。然而,N2O 的娱乐和临床用途涵盖了广泛的浓度范围。因此,我们试图确定在广泛的浓度范围内,慢性 N2O 给药对体温调节的适应。

方法

本研究分为两个阶段。在第一阶段,我们让大鼠适应 12 次 3 小时的 N2O 给药,分别给予 0%、15%、30%、45%、60%或 75%的 N2O(每组 12 只);结果是核心温度(通过遥测法)和产热(通过呼吸测量法)。在第二阶段,我们使用热梯度(范围为 8°C-38°C)在吸入指定浓度的 N2O 时,单次评估每个适应组的热偏好、核心温度和运动。

结果

在第一阶段,与对照组(≥30%N2O 与基线相比)相比,重复的 N2O 给药导致≥45%N2O 吸入时与剂量相关的体温升高和代谢亢进状态。在第二阶段,这些组的大鼠在 N2O 吸入时选择了较凉爽的环境温度,但仍出现了一些体温升高。然而,在梯度中可以明显看出与浓度相关的运动增加,理论计算和回归分析都表明,运动有助于残留的体温升高。

结论

大鼠获得的 N2O 体温升高非常显著,即使有可以完全抵消体温升高的环境温度,也会发生。在梯度中的运动增加可能会导致体温升高。我们的数据与药物治疗期间自主和行为性体温调节机制的去协调一致的适应性假说一致。我们的结果对 N2O 滥用研究以及对适应假说在药物成瘾中的作用的研究都有影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ccf/5909668/99c90e673515/pone.0194794.g001.jpg

相似文献

1
Concentration-related metabolic rate and behavioral thermoregulatory adaptations to serial administrations of nitrous oxide in rats.
PLoS One. 2018 Apr 19;13(4):e0194794. doi: 10.1371/journal.pone.0194794. eCollection 2018.
5
Systems-level adaptations explain chronic tolerance development to nitrous oxide hypothermia in young and mature rats.
Psychopharmacology (Berl). 2007 Apr;191(2):233-42. doi: 10.1007/s00213-006-0655-1. Epub 2007 Jan 10.
7
Nitrous oxide causes a regulated hypothermia: rats select a cooler ambient temperature while becoming hypothermic.
Physiol Behav. 2011 Apr 18;103(1):79-85. doi: 10.1016/j.physbeh.2010.12.018. Epub 2010 Dec 22.
8
Assessment of heat production, heat loss, and core temperature during nitrous oxide exposure: a new paradigm for studying drug effects and opponent responses.
Am J Physiol Regul Integr Comp Physiol. 2005 Mar;288(3):R692-701. doi: 10.1152/ajpregu.00412.2004. Epub 2004 Nov 24.
9
The effect of 30% nitrous oxide on thermoregulatory responses in humans during hypothermia.
Anesthesiology. 1992 Apr;76(4):550-9. doi: 10.1097/00000542-199204000-00011.
10
Predicting addictive vulnerability: individual differences in initial responding to a drug's pharmacological effects.
PLoS One. 2015 Apr 16;10(4):e0124740. doi: 10.1371/journal.pone.0124740. eCollection 2015.

引用本文的文献

2
Nitrous oxide consistently attenuates thermogenic and thermoperceptual responses to repetitive cold stress in humans.
J Appl Physiol (1985). 2023 Sep 1;135(3):631-641. doi: 10.1152/japplphysiol.00309.2023. Epub 2023 Jul 20.
4
Individual differences in biological regulation: Predicting vulnerability to drug addiction, obesity, and other dysregulatory disorders.
Exp Clin Psychopharmacol. 2020 Aug;28(4):388-403. doi: 10.1037/pha0000371. Epub 2020 Apr 27.
5
Validation of an equation for energy expenditure that does not require the respiratory quotient.
PLoS One. 2019 Feb 1;14(2):e0211585. doi: 10.1371/journal.pone.0211585. eCollection 2019.

本文引用的文献

1
Plasma corticosterone, epinephrine, and norepinephrine levels increase during administration of nitrous oxide in rats.
Stress. 2018 May;21(3):274-278. doi: 10.1080/10253890.2017.1402175. Epub 2017 Nov 16.
2
NMDA Glutamate Receptor Antagonism and the Heritable Risk for Alcoholism: New Insights from a Study of Nitrous Oxide.
Int J Neuropsychopharmacol. 2017 Apr 1;20(4):351-353. doi: 10.1093/ijnp/pyw118.
3
Correctly identifying responses is critical for understanding homeostatic and allostatic regulation.
Temperature (Austin). 2014 Dec 31;1(3):157-9. doi: 10.4161/23328940.2014.982048. eCollection 2014 Oct-Dec.
5
Individual differences in initial morphine sensitivity as a predictor for the development of opiate addiction in rats.
Behav Brain Res. 2016 Oct 15;313:315-323. doi: 10.1016/j.bbr.2016.07.038. Epub 2016 Jul 22.
8
Up: The rise of nitrous oxide abuse. An international survey of contemporary nitrous oxide use.
J Psychopharmacol. 2016 Apr;30(4):395-401. doi: 10.1177/0269881116632375. Epub 2016 Feb 24.
9
The Low Level of Response to Alcohol-Based Heavy Drinking Prevention Program: One-Year Follow-Up.
J Stud Alcohol Drugs. 2016 Jan;77(1):25-37. doi: 10.15288/jsad.2016.77.25.
10
Recreational nitrous oxide use: Prevalence and risks.
Regul Toxicol Pharmacol. 2015 Dec;73(3):790-6. doi: 10.1016/j.yrtph.2015.10.017. Epub 2015 Oct 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验