Suppr超能文献

采用协同机器学习方法对四种单克隆抗体的拉曼光谱进行分类和回归分析的优化。

Optimization of classification and regression analysis of four monoclonal antibodies from Raman spectra using collaborative machine learning approach.

机构信息

European Georges Pompidou Hospital (AP-HP), Pharmacy Department, 75015 Paris, France; Lip(Sys)(2) - EA7357 - Chimie Analytique Pharmaceutique (FKA EA4041 Groupe de Chimie Analytique de Paris-Sud), Univ. Paris-Sud, Université Paris-Saclay, F92290 Chatenay-Malabry, France.

Paris-Saclay Center for Data Science, Université Paris-Saclay, 91440 Orsay, France; LAL, CNRS, 91440 Orsay, France.

出版信息

Talanta. 2018 Jul 1;184:260-265. doi: 10.1016/j.talanta.2018.02.109. Epub 2018 Mar 8.

Abstract

The use of monoclonal antibodies (mAbs) constitutes one of the most important strategies to treat patients suffering from cancers such as hematological malignancies and solid tumors. These antibodies are prescribed by the physician and prepared by hospital pharmacists. An analytical control enables the quality of the preparations to be ensured. The aim of this study was to explore the development of a rapid analytical method for quality control. The method used four mAbs (Infliximab, Bevacizumab, Rituximab and Ramucirumab) at various concentrations and was based on recording Raman data and coupling them to a traditional chemometric and machine learning approach for data analysis. Compared to conventional linear approach, prediction errors are reduced with a data-driven approach using statistical machine learning methods. In the latter, preprocessing and predictive models are jointly optimized. An additional original aspect of the work involved on submitting the problem to a collaborative data challenge platform called Rapid Analytics and Model Prototyping (RAMP). This allowed using solutions from about 300 data scientists in collaborative work. Using machine learning, the prediction of the four mAbs samples was considerably improved. The best predictive model showed a combined error of 2.4% versus 14.6% using linear approach. The concentration and classification errors were 5.8% and 0.7%, only three spectra were misclassified over the 429 spectra of the test set. This large improvement obtained with machine learning techniques was uniform for all molecules but maximal for Bevacizumab with an 88.3% reduction on combined errors (2.1% versus 17.9%).

摘要

单克隆抗体(mAbs)的使用是治疗血液病和实体瘤等癌症患者的最重要策略之一。这些抗体由医生开具处方,并由医院药剂师制备。分析性控制可确保制剂的质量。本研究旨在探索开发一种用于质量控制的快速分析方法。该方法使用了四种 mAb(英夫利昔单抗、贝伐珠单抗、利妥昔单抗和雷莫芦单抗)在不同浓度下,并基于记录拉曼数据并将其与传统化学计量学和机器学习方法相结合进行数据分析。与传统的线性方法相比,使用基于统计机器学习方法的数据驱动方法可以减少预测误差。在后一种方法中,预处理和预测模型是联合优化的。这项工作的另一个原创方面是将该问题提交给一个名为 Rapid Analytics and Model Prototyping(RAMP)的协作数据挑战平台。这使得大约 300 名数据科学家可以在协作工作中使用解决方案。使用机器学习,可以大大提高对四种 mAb 样品的预测。最佳预测模型显示出与线性方法相比,综合误差为 2.4%对 14.6%。浓度和分类误差分别为 5.8%和 0.7%,在 429 个测试集光谱中,只有三个光谱被错误分类。使用机器学习技术获得的这种大幅改进对所有分子都是一致的,但对贝伐珠单抗的改进最大,综合误差降低了 88.3%(2.1%对 17.9%)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验