From the Conway Institute and.
School of Medicine, University College Dublin, Dublin 4, Ireland and.
J Biol Chem. 2018 Jun 8;293(23):8750-8760. doi: 10.1074/jbc.RA117.001045. Epub 2018 Apr 19.
Protein-protein interactions critically regulate many biological systems, but quantifying functional assembly of multipass membrane complexes in their native context is still challenging. Here, we combined modeling-assisted protein modification and information from human disease variants with a minimal-size fusion tag, split-luciferase-based approach to probe assembly of the NADPH oxidase 4 (NOX4)-p22 enzyme, an integral membrane complex with unresolved structure, which is required for electron transfer and generation of reactive oxygen species (ROS). Integrated analyses of heterodimerization, trafficking, and catalytic activity identified determinants for the NOX4-p22 interaction, such as heme incorporation into NOX4 and hot spot residues in transmembrane domains 1 and 4 in p22 Moreover, their effect on NOX4 maturation and ROS generation was analyzed. We propose that this reversible and quantitative protein-protein interaction technique with its small split-fragment approach will provide a protein engineering and discovery tool not only for NOX research, but also for other intricate membrane protein complexes, and may thereby facilitate new drug discovery strategies for managing NOX-associated diseases.
蛋白质-蛋白质相互作用对许多生物系统至关重要,但在其天然环境下定量测定多跨膜复合物的功能组装仍然具有挑战性。在这里,我们将建模辅助的蛋白质修饰与来自人类疾病变体的信息以及最小大小的融合标签、基于分割荧光素酶的方法相结合,来探测 NADPH 氧化酶 4 (NOX4)-p22 酶的组装,该酶是一种具有未解决结构的完整膜复合物,是电子转移和活性氧 (ROS) 生成所必需的。异二聚化、运输和催化活性的综合分析确定了 NOX4-p22 相互作用的决定因素,例如血红素掺入到 NOX4 中以及 p22 跨膜结构域 1 和 4 中的热点残基。此外,还分析了它们对 NOX4 成熟和 ROS 生成的影响。我们提出,这种具有小分割片段方法的可逆和定量蛋白质-蛋白质相互作用技术将不仅为 NOX 研究,而且为其他复杂的膜蛋白复合物提供一种蛋白质工程和发现工具,并可能促进管理与 NOX 相关疾病的新药物发现策略。