Suppr超能文献

定量相互作用分析可深入了解功能性 NOX4 NADPH 氧化酶异源二聚体的组装。

Quantitative interaction analysis permits molecular insights into functional NOX4 NADPH oxidase heterodimer assembly.

机构信息

From the Conway Institute and.

School of Medicine, University College Dublin, Dublin 4, Ireland and.

出版信息

J Biol Chem. 2018 Jun 8;293(23):8750-8760. doi: 10.1074/jbc.RA117.001045. Epub 2018 Apr 19.

Abstract

Protein-protein interactions critically regulate many biological systems, but quantifying functional assembly of multipass membrane complexes in their native context is still challenging. Here, we combined modeling-assisted protein modification and information from human disease variants with a minimal-size fusion tag, split-luciferase-based approach to probe assembly of the NADPH oxidase 4 (NOX4)-p22 enzyme, an integral membrane complex with unresolved structure, which is required for electron transfer and generation of reactive oxygen species (ROS). Integrated analyses of heterodimerization, trafficking, and catalytic activity identified determinants for the NOX4-p22 interaction, such as heme incorporation into NOX4 and hot spot residues in transmembrane domains 1 and 4 in p22 Moreover, their effect on NOX4 maturation and ROS generation was analyzed. We propose that this reversible and quantitative protein-protein interaction technique with its small split-fragment approach will provide a protein engineering and discovery tool not only for NOX research, but also for other intricate membrane protein complexes, and may thereby facilitate new drug discovery strategies for managing NOX-associated diseases.

摘要

蛋白质-蛋白质相互作用对许多生物系统至关重要,但在其天然环境下定量测定多跨膜复合物的功能组装仍然具有挑战性。在这里,我们将建模辅助的蛋白质修饰与来自人类疾病变体的信息以及最小大小的融合标签、基于分割荧光素酶的方法相结合,来探测 NADPH 氧化酶 4 (NOX4)-p22 酶的组装,该酶是一种具有未解决结构的完整膜复合物,是电子转移和活性氧 (ROS) 生成所必需的。异二聚化、运输和催化活性的综合分析确定了 NOX4-p22 相互作用的决定因素,例如血红素掺入到 NOX4 中以及 p22 跨膜结构域 1 和 4 中的热点残基。此外,还分析了它们对 NOX4 成熟和 ROS 生成的影响。我们提出,这种具有小分割片段方法的可逆和定量蛋白质-蛋白质相互作用技术将不仅为 NOX 研究,而且为其他复杂的膜蛋白复合物提供一种蛋白质工程和发现工具,并可能促进管理与 NOX 相关疾病的新药物发现策略。

相似文献

1
Quantitative interaction analysis permits molecular insights into functional NOX4 NADPH oxidase heterodimer assembly.
J Biol Chem. 2018 Jun 8;293(23):8750-8760. doi: 10.1074/jbc.RA117.001045. Epub 2018 Apr 19.
2
Protein-Protein Interaction Assay to Analyze NOX4/p22 Heterodimerization.
Methods Mol Biol. 2019;1982:447-458. doi: 10.1007/978-1-4939-9424-3_26.
3
Interaction between p22 and Nox4 in the endoplasmic reticulum suggests a unique mechanism of NADPH oxidase complex formation.
Free Radic Biol Med. 2018 Feb 20;116:41-49. doi: 10.1016/j.freeradbiomed.2017.12.031. Epub 2017 Dec 24.
4
Mutational analysis reveals distinct features of the Nox4-p22 phox complex.
J Biol Chem. 2008 Dec 12;283(50):35273-82. doi: 10.1074/jbc.M804200200. Epub 2008 Oct 10.
5
The downregulation of NADPH oxidase Nox4 during hypoxia in hemangioendothelioma cells: a possible role of p22 on Nox4 protein stability.
Free Radic Res. 2021 Oct;55(9-10):996-1004. doi: 10.1080/10715762.2021.2009116. Epub 2022 Jan 11.
6
Structural insights into Nox4 and Nox2: motifs involved in function and cellular localization.
Mol Cell Biol. 2010 Feb;30(4):961-75. doi: 10.1128/MCB.01393-09. Epub 2009 Dec 7.
8
Direct interaction of the novel Nox proteins with p22phox is required for the formation of a functionally active NADPH oxidase.
J Biol Chem. 2004 Oct 29;279(44):45935-41. doi: 10.1074/jbc.M406486200. Epub 2004 Aug 18.
9
Nox4 B-loop creates an interface between the transmembrane and dehydrogenase domains.
J Biol Chem. 2010 Apr 2;285(14):10281-90. doi: 10.1074/jbc.M109.084939. Epub 2010 Feb 5.
10
CRISPR/Cas9-mediated knockout of p22phox leads to loss of Nox1 and Nox4, but not Nox5 activity.
Redox Biol. 2016 Oct;9:287-295. doi: 10.1016/j.redox.2016.08.013. Epub 2016 Aug 24.

引用本文的文献

2
Structure of the core human NADPH oxidase NOX2.
Nat Commun. 2022 Oct 14;13(1):6079. doi: 10.1038/s41467-022-33711-0.
4
Deciphering the Interaction between Neonatal Fc Receptor and Antibodies Using a Homogeneous Bioluminescent Immunoassay.
J Immunol. 2021 Aug 15;207(4):1211-1221. doi: 10.4049/jimmunol.2100181. Epub 2021 Jul 26.
5
Colitis susceptibility in mice with reactive oxygen species deficiency is mediated by mucus barrier and immune defense defects.
Mucosal Immunol. 2019 Nov;12(6):1316-1326. doi: 10.1038/s41385-019-0205-x. Epub 2019 Sep 25.

本文引用的文献

1
Crystal structures and atomic model of NADPH oxidase.
Proc Natl Acad Sci U S A. 2017 Jun 27;114(26):6764-6769. doi: 10.1073/pnas.1702293114. Epub 2017 Jun 12.
2
Small molecules, big targets: drug discovery faces the protein-protein interaction challenge.
Nat Rev Drug Discov. 2016 Aug;15(8):533-50. doi: 10.1038/nrd.2016.29. Epub 2016 Apr 11.
3
Getting to the core of fibrosis: targeting redox imbalance in aging.
Ann Transl Med. 2016 Mar;4(5):93. doi: 10.21037/atm.2015.12.45.
4
The Endoplasmic Reticulum Chaperone Calnexin Is a NADPH Oxidase NOX4 Interacting Protein.
J Biol Chem. 2016 Mar 25;291(13):7045-59. doi: 10.1074/jbc.M115.710772. Epub 2016 Feb 9.
5
NanoLuc Complementation Reporter Optimized for Accurate Measurement of Protein Interactions in Cells.
ACS Chem Biol. 2016 Feb 19;11(2):400-8. doi: 10.1021/acschembio.5b00753. Epub 2015 Dec 10.
6
Defects in NADPH Oxidase Genes and in Very Early Onset Inflammatory Bowel Disease.
Cell Mol Gastroenterol Hepatol. 2015 Sep 1;1(5):489-502. doi: 10.1016/j.jcmgh.2015.06.005.
7
Discovery of GSK2795039, a Novel Small Molecule NADPH Oxidase 2 Inhibitor.
Antioxid Redox Signal. 2015 Aug 10;23(5):358-74. doi: 10.1089/ars.2014.6202.
8
The EMBL-EBI bioinformatics web and programmatic tools framework.
Nucleic Acids Res. 2015 Jul 1;43(W1):W580-4. doi: 10.1093/nar/gkv279. Epub 2015 Apr 6.
10
Evolution of NADPH Oxidase Inhibitors: Selectivity and Mechanisms for Target Engagement.
Antioxid Redox Signal. 2015 Aug 10;23(5):406-27. doi: 10.1089/ars.2013.5814. Epub 2014 Feb 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验