Suppr超能文献

用于为起搏器供电的扇折式压电能量收集器的实验研究

Experimental investigation of fan-folded piezoelectric energy harvesters for powering pacemakers.

作者信息

Ansari M H, Karami M Amin

机构信息

PhD candidate, Department of Mechanical and Aerospace Engineering, University at Buffalo (SUNY), NY 14260, United States of America.

Assistant Professor Department of Mechanical and Aerospace Engineering, University at Buffalo (SUNY), NY 14260, United States of America.

出版信息

Smart Mater Struct. 2017 Jun;26(6). doi: 10.1088/1361-665X/aa6cfd. Epub 2017 May 2.

Abstract

This paper studies the fabrication and testing of a magnet free piezoelectric energy harvester (EH) for powering biomedical devices and sensors inside the body. The design for the EH is a fan-folded structure consisting of bimorph piezoelectric beams folding on top of each other. An actual size experimental prototype is fabricated to verify the developed analytical models. The model is verified by matching the analytical results of the tip acceleration frequency response functions (FRF) and voltage FRF with the experimental results. The generated electricity is measured when the EH is excited by the heartbeat. A closed loop shaker system is utilized to reproduce the heartbeat vibrations. Achieving low fundamental natural frequency is a key factor to generate sufficient energy for pacemakers using heartbeat vibrations. It is shown that the natural frequency of the small-scale device is less than 20 Hz due to its unique fan-folded design. The experimental results show that the small-scale EH generates sufficient power for state of the art pacemakers. The 1 cm EH with18.4 gr tip mass generates more than16 W of power from a normal heartbeat waveform. The robustness of the device to the heart rate is also studied by measuring the relation between the power output and the heart rate.

摘要

本文研究了一种用于为体内生物医学设备和传感器供电的无磁压电能量收集器(EH)的制造与测试。该能量收集器的设计为一种扇折结构,由双压电晶片压电梁相互堆叠折叠而成。制作了一个实际尺寸的实验原型来验证所开发的分析模型。通过将尖端加速度频率响应函数(FRF)和电压FRF的分析结果与实验结果进行匹配来验证该模型。当能量收集器由心跳激励时,测量其产生的电能。利用闭环振动台系统来再现心跳振动。实现低固有频率是利用心跳振动为起搏器产生足够能量的关键因素。结果表明,由于其独特的扇折设计,该小型设备的固有频率小于20Hz。实验结果表明,该小型能量收集器能为先进的起搏器产生足够的电能。带有18.4克尖端质量的1厘米能量收集器从正常心跳波形中产生的功率超过16微瓦。还通过测量功率输出与心率之间的关系来研究该设备对心率的鲁棒性。

相似文献

1
Experimental investigation of fan-folded piezoelectric energy harvesters for powering pacemakers.
Smart Mater Struct. 2017 Jun;26(6). doi: 10.1088/1361-665X/aa6cfd. Epub 2017 May 2.
2
A sub-cc nonlinear piezoelectric energy harvester for powering leadless pacemakers.
J Intell Mater Syst Struct. 2018 Feb;29(3):438-445. doi: 10.1177/1045389X17708344. Epub 2017 May 17.
3
Low-frequency meandering piezoelectric vibration energy harvester.
IEEE Trans Ultrason Ferroelectr Freq Control. 2012 May;59(5):846-58. doi: 10.1109/TUFFC.2012.2269.
6
Low-Frequency and Broadband Vibration Energy Harvesting Using Base-Mounted Piezoelectric Transducers.
IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Nov;64(11):1735-1743. doi: 10.1109/TUFFC.2017.2739745. Epub 2017 Aug 14.
10
Bimorph piezoelectric vibration energy harvester with flexible 3D meshed-core structure for low frequency vibration.
Sci Technol Adv Mater. 2018 Sep 25;19(1):660-668. doi: 10.1080/14686996.2018.1508985. eCollection 2018.

引用本文的文献

2
A miniaturized endocardial electromagnetic energy harvester for leadless cardiac pacemakers.
PLoS One. 2020 Sep 28;15(9):e0239667. doi: 10.1371/journal.pone.0239667. eCollection 2020.
3
Force detection, center of pressure tracking, and energy harvesting from a piezoelectric knee implant.
Smart Mater Struct. 2018 Nov;27(11). doi: 10.1088/1361-665X/aad755. Epub 2018 Sep 25.
4
Theory of energy harvesting from heartbeat including the effects of pleural cavity and respiration.
Proc Math Phys Eng Sci. 2017 Nov;473(2207):20170615. doi: 10.1098/rspa.2017.0615. Epub 2017 Nov 22.

本文引用的文献

1
Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester.
Adv Mater. 2014 Jul 23;26(28):4880-7. doi: 10.1002/adma.201400562. Epub 2014 Apr 17.
2
Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm.
Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):1927-32. doi: 10.1073/pnas.1317233111. Epub 2014 Jan 21.
3
Trends in permanent pacemaker implantation in the United States from 1993 to 2009: increasing complexity of patients and procedures.
J Am Coll Cardiol. 2012 Oct 16;60(16):1540-5. doi: 10.1016/j.jacc.2012.07.017. Epub 2012 Sep 19.
4
Energy harvesting from the beating heart by a mass imbalance oscillation generator.
Ann Biomed Eng. 2013 Jan;41(1):131-41. doi: 10.1007/s10439-012-0623-3. Epub 2012 Jul 18.
6
Improvements in pacemaker energy consumption and functional capability: four decades of progress.
Pacing Clin Electrophysiol. 1997 Jan;20(1 Pt 1):2-9. doi: 10.1111/j.1540-8159.1997.tb04805.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验