Lu Wenqi, Lighter Daniel, Styles Iain B
School of Computer Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
Physical Sciences for Health Centre for Doctoral Training, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
Biomed Opt Express. 2018 Mar 2;9(4):1423-1444. doi: 10.1364/BOE.9.001423. eCollection 2018 Apr 1.
Spectrally constrained diffuse optical tomography (SCDOT) is known to improve reconstruction in diffuse optical imaging; constraining the reconstruction by coupling the optical properties across multiple wavelengths suppresses artefacts in the resulting reconstructed images. In other work, L-norm regularization has been shown to improve certain types of image reconstruction problems as its sparsity-promoting properties render it robust against noise and enable the preservation of edges in images, but because the L-norm is non-differentiable, it is not always simple to implement. In this work, we show how to incorporate L regularization into SCDOT. Three popular algorithms for L regularization are assessed for application in SCDOT: iteratively reweighted least square algorithm (IRLS), alternating directional method of multipliers (ADMM), and fast iterative shrinkage-thresholding algorithm (FISTA). We introduce an objective procedure for determining the regularization parameter in these algorithms and compare their performance in simulated experiments, and in real data acquired from a tissue phantom. Our results show that L regularization consistently outperforms Tikhonov regularization in this application, particularly in the presence of noise.
已知光谱约束扩散光学层析成像(SCDOT)可改善扩散光学成像中的重建效果;通过耦合多个波长的光学特性来约束重建,可抑制重建图像中出现的伪影。在其他研究中,L范数正则化已被证明可改善某些类型的图像重建问题,因为其促进稀疏性的特性使其对噪声具有鲁棒性,并能保留图像中的边缘,但由于L范数不可微,其实现并不总是那么简单。在这项工作中,我们展示了如何将L正则化纳入SCDOT。评估了三种用于L正则化的流行算法在SCDOT中的应用:迭代加权最小二乘算法(IRLS)、交替方向乘子法(ADMM)和快速迭代收缩阈值算法(FISTA)。我们介绍了一种确定这些算法中正则化参数的客观方法,并在模拟实验以及从组织模型获取的真实数据中比较了它们的性能。我们的结果表明,在该应用中,L正则化始终优于蒂霍诺夫正则化,尤其是在存在噪声的情况下。