Zhang Menghao, Uddin K M Shihab, Li Shuying, Zhu Quing
Electrical and System Engineering Department, Washington University in St. Louis, 1 Brooking Dr, St. Louis, MO 63130, USA.
Biomedical Engineering Department, Washington University in St. Louis, 1 Brooking Dr, St. Louis, MO 63130, USA.
Biomed Opt Express. 2020 May 28;11(6):3331-3345. doi: 10.1364/BOE.388816. eCollection 2020 Jun 1.
Ultrasound (US)-guided diffuse optical tomography (DOT) is a promising non-invasive functional imaging technique for diagnosing breast cancer and monitoring breast cancer treatment response. However, because larger lesions are highly absorbing, reconstructions of these lesions using reflection geometry may exhibit light shadowing, which leads to inaccurate quantification of their deeper portions. Here we propose a depth-regularized reconstruction algorithm combined with a semi-automated interactive neural network (CNN) for depth-dependent reconstruction of absorption distribution. CNN segments co-registered US to extract both spatial and depth priors, and the depth-regularized algorithm incorporates these parameters into the reconstruction. Through simulation and phantom data, the proposed algorithm is shown to significantly improve the depth distribution of reconstructed absorption maps of large targets. Evaluated with 26 patients with larger breast lesions, the algorithm shows 2.4 to 3 times improvement in the top-to-bottom reconstructed homogeneity of the absorption maps for these lesions.
超声(US)引导下的漫射光学断层扫描(DOT)是一种很有前景的非侵入性功能成像技术,可用于诊断乳腺癌和监测乳腺癌治疗反应。然而,由于较大的病变吸收性很强,使用反射几何结构对这些病变进行重建可能会出现光阴影,这会导致对其深部区域的定量不准确。在此,我们提出一种深度正则化重建算法,结合半自动交互式神经网络(CNN),用于吸收分布的深度相关重建。CNN对配准后的超声进行分割,以提取空间和深度先验信息,深度正则化算法将这些参数纳入重建过程。通过模拟和体模数据表明,所提出的算法能显著改善大目标重建吸收图的深度分布。对26例患有较大乳腺病变的患者进行评估,该算法在这些病变吸收图的上下重建均匀性方面提高了2.4至3倍。