Suppr超能文献

结缔组织指纹区拉曼振动模式的第一性原理计算。

First-principles calculations of Raman vibrational modes in the fingerprint region for connective tissue.

作者信息

Sato E T, Martinho H

机构信息

Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos Estados 5001, Santo André-SP, 09210-580, Brazil.

出版信息

Biomed Opt Express. 2018 Mar 15;9(4):1728-1734. doi: 10.1364/BOE.9.001728. eCollection 2018 Apr 1.

Abstract

Vibrational spectroscopy has been widely employed to unravel the physical-chemical properties of biological systems. Due to its high sensitivity to monitoring real time "" changes, Raman spectroscopy has been successfully employed, e.g., in biomedicine, metabolomics, and biomedical engineering. The interpretation of Raman spectra in these cases is based on the isolated macromolecules constituent vibrational assignment. Due to this, probing the anharmonic or the mutual interactions among specific moieties/side chains is a challenge. We present a complete vibrational modes calculation for connective tissue in the fingerprint region (800 - 1800 cm) using first-principles density functional theory. Our calculations accounted for the inherent complexity of the spectral features of this region and useful spectral markers for biological processes were unambiguously identified. Our results indicated that important spectral features correlated to molecular characteristics have been ignored in the current tissue spectral bands assignments. In particular, we found that the presence of confined water is mainly responsible for the observed spectral complexity.

摘要

振动光谱已被广泛用于揭示生物系统的物理化学性质。由于拉曼光谱对实时“变化”监测具有高灵敏度,它已成功应用于例如生物医学、代谢组学和生物医学工程领域。在这些情况下,拉曼光谱的解释基于孤立大分子成分的振动归属。因此,探测特定基团/侧链之间的非谐性或相互作用是一项挑战。我们使用第一性原理密度泛函理论对指纹区(800 - 1800 cm)的结缔组织进行了完整的振动模式计算。我们的计算考虑了该区域光谱特征的固有复杂性,并明确识别出了用于生物过程的有用光谱标记。我们的结果表明,当前组织光谱带归属中忽略了与分子特征相关的重要光谱特征。特别是,我们发现受限水的存在是观察到的光谱复杂性的主要原因。

相似文献

1
First-principles calculations of Raman vibrational modes in the fingerprint region for connective tissue.
Biomed Opt Express. 2018 Mar 15;9(4):1728-1734. doi: 10.1364/BOE.9.001728. eCollection 2018 Apr 1.
2
Calculation of Anharmonic IR and Raman Intensities for Periodic Systems from DFT Calculations: Implementation and Validation.
J Chem Theory Comput. 2020 May 12;16(5):3343-3351. doi: 10.1021/acs.jctc.9b01061. Epub 2020 Apr 28.
3
Vibrational spectral fingerprinting for chemical recognition of biominerals.
Chemphyschem. 2020 Apr 20;21(8):770-778. doi: 10.1002/cphc.202000016. Epub 2020 Mar 27.
6
Vibrational spectra, quantum chemical calculations and spectral assignments of 1,1-difluoro-1-silacyclohexane.
Spectrochim Acta A Mol Biomol Spectrosc. 2015 Feb 5;136 Pt A:51-7. doi: 10.1016/j.saa.2013.10.058. Epub 2013 Oct 25.
9
Fourier transform infrared and Raman spectra, vibrational assignment and density functional theory calculations of naphthazarin.
Spectrochim Acta A Mol Biomol Spectrosc. 2004 Jan;60(1-2):111-20. doi: 10.1016/s1386-1425(03)00186-0.
10
Vibrational spectroscopic studies of Isoleucine by quantum chemical calculations.
Spectrochim Acta A Mol Biomol Spectrosc. 2014 Apr 24;124:365-74. doi: 10.1016/j.saa.2014.01.067. Epub 2014 Jan 24.

引用本文的文献

2
Pressure-Driven Reactivity in Dense Methane-Nitrogen Mixtures.
Angew Chem Int Ed Engl. 2025 May 12;64(20):e202422710. doi: 10.1002/anie.202422710. Epub 2025 Apr 3.
3
Label-Free SERS Sensors for Real-Time Monitoring of Tyrosine Phosphorylation.
Anal Chem. 2024 Nov 12;96(45):17978-17983. doi: 10.1021/acs.analchem.4c02860. Epub 2024 Oct 29.
4
High-entropy-perovskite subnanowires for photoelectrocatalytic coupling of methane to acetic acid.
Nat Commun. 2024 Aug 6;15(1):6669. doi: 10.1038/s41467-024-50977-8.
5
Imaging Sub-Cellular Methionine and Insulin Interplay in Triple Negative Breast Cancer Lipid Droplet Metabolism.
Front Oncol. 2022 Mar 10;12:858017. doi: 10.3389/fonc.2022.858017. eCollection 2022.
8
Raman Spectroscopy to Monitor Post-Translational Modifications and Degradation in Monoclonal Antibody Therapeutics.
Anal Chem. 2020 Aug 4;92(15):10381-10389. doi: 10.1021/acs.analchem.0c00627. Epub 2020 Jul 16.

本文引用的文献

1
In vivo Confocal Raman Spectroscopic Analysis of the Effects of Infrared Radiation in the Human Skin Dermis.
Photochem Photobiol. 2017 Mar;93(2):613-618. doi: 10.1111/php.12701. Epub 2017 Feb 16.
2
Optical diagnosis of actinic cheilitis by infrared spectroscopy.
Photodiagnosis Photodyn Ther. 2016 Dec;16:27-34. doi: 10.1016/j.pdpdt.2016.07.013. Epub 2016 Aug 1.
3
Non-linear longitudinal compression effect on dynamics of the transcription bubble in DNA.
Biophys Chem. 2016 Jul-Aug;214-215:47-53. doi: 10.1016/j.bpc.2016.05.005. Epub 2016 May 16.
4
Using Raman spectroscopy to characterize biological materials.
Nat Protoc. 2016 Apr;11(4):664-87. doi: 10.1038/nprot.2016.036. Epub 2016 Mar 10.
5
Rapid and noninvasive technique to assess the metabolomics profile of bovine embryos produced in vitro by Raman spectroscopy.
Biomed Opt Express. 2015 Jul 8;6(8):2830-9. doi: 10.1364/BOE.6.002830. eCollection 2015 Aug 1.
6
Molecular model for hydrated biological tissues.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jun;91(6):063310. doi: 10.1103/PhysRevE.91.063310. Epub 2015 Jun 25.
8
Anharmonic Backbone Vibrations in Ultrafast Processes at the DNA-Water Interface.
J Phys Chem B. 2015 Jul 30;119(30):9670-7. doi: 10.1021/acs.jpcb.5b04499. Epub 2015 Jul 10.
9
Discrimination between oral cancer and healthy tissue based on water content determined by Raman spectroscopy.
Anal Chem. 2015 Feb 17;87(4):2419-26. doi: 10.1021/ac504362y. Epub 2015 Feb 5.
10
Emerging technologies to map the protein methylome.
J Mol Biol. 2014 Oct 9;426(20):3350-62. doi: 10.1016/j.jmb.2014.04.024. Epub 2014 May 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验