Suppr超能文献

利用工程化的产甲烷甲基杆菌 5GB1 从工业培养基中进行高通量乳酸生产的模块化方法。

A modular approach for high-flux lactic acid production from methane in an industrial medium using engineered Methylomicrobium buryatense 5GB1.

机构信息

Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street MS-667, Houston, TX, 77005, USA.

Department of Bioengineering, Rice University, Houston, 77005, USA.

出版信息

J Ind Microbiol Biotechnol. 2018 Jun;45(6):379-391. doi: 10.1007/s10295-018-2035-3. Epub 2018 Apr 19.

Abstract

Convergence of market drivers such as abundant availability of inexpensive natural gas and increasing awareness of its global warming effects have created new opportunities for the development of small-scale gas-to-liquid (GTL) conversion technologies that can efficiently utilize methane, the primary component of natural gas. Leveraging the unique ability of methanotrophs that use methane as carbon and energy source, biological GTL platforms can be envisioned that are readily deployable at remote petroleum drilling sites where large chemical GTL infrastructure is uneconomical to set-up. Methylomicrobium buryatense, an obligate methanotroph, has gained traction as a potential industrial methanotrophic host because of availability of genetic tools and recent advances in its metabolic engineering. However, progress is impeded by low strain performance and lack of an industrial medium. In this study, we first established a small-scale cultivation platform using Hungate tubes for growth of M. buryatense at medium-to-high-throughput that also enabled 2X faster growth compared to that obtained in traditional glass serum bottles. Then, employing a synthetic biology approach we engineered M. buryatense with varying promoter (inducible and constitutive) and ribosome-binding site combinations, and obtained a strain capable of producing L-lactate from methane at a flux 14-fold higher than previously reported. Finally, we demonstrated L-lactate production in an industrial medium by replacing nitrate with less-expensive ammonium as the nitrogen source. Under these conditions, L-lactate was synthesized at a flux approximately 50-fold higher than that reported previously in a bioreactor system while achieving a titer of 0.6 g/L. These findings position M. buryatense closer to becoming an industrial host strain of choice, and pave new avenues for accelerating methane-to-chemical conversion using synthetic biology.

摘要

市场驱动因素的融合,如丰富且廉价的天然气供应以及对其全球变暖效应的日益认识,为小规模天然气制液体(GTL)转化技术的发展创造了新的机会,这些技术可以有效地利用天然气的主要成分甲烷。利用甲烷营养菌利用甲烷作为碳源和能源的独特能力,可以设想出生物 GTL 平台,这些平台可以在偏远的石油钻探现场轻松部署,在这些地方,建立大型化学 GTL 基础设施在经济上是不可行的。作为一种潜在的工业甲烷营养菌宿主,严格依赖甲烷的甲基杆菌(Methylomicrobium buryatense)因其遗传工具的可用性和其代谢工程方面的最新进展而受到关注。然而,由于菌株性能低和缺乏工业培养基,进展受到了阻碍。在这项研究中,我们首先使用亨格特管(Hungate tubes)建立了一个小规模培养平台,用于中高通量的 M. buryatense 生长,与传统的玻璃血清瓶相比,生长速度提高了 2 倍。然后,我们采用合成生物学方法,对 M. buryatense 进行了不同启动子(诱导型和组成型)和核糖体结合位点组合的工程改造,获得了一种能够以比以前报道的通量高 14 倍的速度从甲烷生产 L-乳酸的菌株。最后,我们通过用更廉价的铵盐替代硝酸盐作为氮源,在工业培养基中证明了 L-乳酸的生产。在这些条件下,L-乳酸的合成通量比以前在生物反应器系统中报道的高约 50 倍,达到了 0.6 g/L 的浓度。这些发现使 M. buryatense 更接近于成为一种工业首选的宿主菌株,并为使用合成生物学加速甲烷到化学转化开辟了新的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验